

ITB Online Summer School on Galaxies dan Cosmology 2020

Introduction to weak gravitational lensing

Deciphering Dark Matter from Galaxies to the Universe

Masamune Oguri Univ. of Tokyo

Plan of this lecture

- general introduction
- lens equation
- weak lensing shear and convergence
- tangential shear
- example of analysis
- weak lensing mass map

Standard cosmological model

- unknown components called dark matter and dark energy
- can explain many observations in a consistent manner

- effect predicted by **general relativity**
- deflection of light ray due to intervening matter
- observed shapes distorted

Observed gravitational lensing

Observed gravitational lensing

all these are 'strong' gravitational lensing!

SDSS J1050+0017 (Subaru/U. Tokyo/NAOJ

Strong and weak lensing

strong lensing visible by eye

weak lensing detected only via statistical analysis

Weak (gravitational) lensing

- except for rare cases, lensing effect is weak
- signal is hindered by intrinsic galaxy shapes
- need to average many galaxies' shapes to extract weak gravitational lensing signals

Example of weak lensing analysis

total (dark) matter distribution inferred by weak lensing (blue)

Deriving lens equation

- master equation for gravitational lensing
- derived from **geodesic equation** in general relativity (cf. Newtonian equation of motion)

$$\frac{d^2 x^{\mu}}{d\lambda^2} + \Gamma^{\mu}{}_{\alpha\beta} \frac{dx^{\alpha}}{d\lambda} \frac{dx^{\beta}}{d\lambda} = 0$$

$$\overrightarrow{\beta} = \overrightarrow{\theta} - \overrightarrow{\alpha}(\overrightarrow{\theta})$$

source positionimage positiondeflection angleon the skyon the sky(depends onlens mass dist.)

Lens equation

lens mass dist.)

Deflection angle (thin lens approx.)

• deflection angle

$$\overrightarrow{\alpha}(\overrightarrow{\theta}) = \frac{1}{\pi} \int d\overrightarrow{\theta'} \kappa(\overrightarrow{\theta'}) \frac{\overrightarrow{\theta} - \overrightarrow{\theta'}}{\left| \overrightarrow{\theta} - \overrightarrow{\theta'} \right|^2}$$

• **CONVERGENCE** (dimensionless surface mass density of lens)

Lens equation: summary

$$\overrightarrow{\beta} = \overrightarrow{\theta} - \overrightarrow{\alpha}(\overrightarrow{\theta})$$

- describes mapping between source position $\hat{\beta}$ (not observed) and image position $\hat{\theta}$ (observed)
- deflection angle d is determined by the mass distribution of the lens = convergence к

Lensing of an extended source $\vec{\theta} + \vec{\delta \theta}$ image θ β+δβ source К line of sight direction lens observer

$$\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta}) \qquad \vec{\beta} + \vec{\delta\beta} = \vec{\theta} + \vec{\delta\theta} - \vec{\alpha}(\vec{\theta} + \vec{\delta\theta}) \\ \simeq \vec{\theta} + \vec{\delta\theta} - \vec{\alpha}(\vec{\theta}) - \frac{\vec{\partial}\vec{\alpha}}{\vec{\partial}\vec{\theta}}\vec{\delta\theta}$$

Distortion of shape

$$\overrightarrow{\delta\beta} = A \overrightarrow{\delta\theta} \qquad A = I - \frac{\partial \overrightarrow{\alpha}}{\partial \overrightarrow{\theta}} = \begin{pmatrix} 1 - \frac{\partial \alpha_1}{\partial \theta_1} & -\frac{\partial \alpha_1}{\partial \theta_2} \\ -\frac{\partial \alpha_2}{\partial \theta_1} & 1 - \frac{\partial \alpha_2}{\partial \theta_2} \end{pmatrix}$$

$$\overrightarrow{\delta\theta} = A^{-1} \overrightarrow{\delta\beta}$$

Connection with convergence

• using the relation

$$\frac{\partial}{\partial \overrightarrow{\theta}} \left(\frac{\overrightarrow{\theta} - \overrightarrow{\theta'}}{\left| \overrightarrow{\theta} - \overrightarrow{\theta'} \right|^2} \right) = 2\pi \delta^{\mathrm{D}} (\overrightarrow{\theta} - \overrightarrow{\theta'})$$

Dirac delta function

we can show

$$tr(A) = 2 - \frac{\partial \alpha_1}{\partial \theta_1} - \frac{\partial \alpha_2}{\partial \theta_2} = 2 - 2\kappa(\vec{\theta})$$

convergence
(dimensionless surface mass density of lens)

Convergence and shear

$$\overrightarrow{\delta\beta} = A \overrightarrow{\delta\theta} \qquad A = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

$$\frac{\text{convergence}}{\kappa(\vec{\theta})} = \frac{\Sigma(\vec{\theta})}{\Sigma_{\text{crit}}}$$

$$\frac{\text{shear}}{\gamma_1(\vec{\theta})} = \frac{1}{2} \left(\frac{\partial \alpha_1}{\partial \theta_1} - \frac{\partial \alpha_2}{\partial \theta_2} \right) = \frac{1}{\pi} \int d\vec{\theta}' \kappa(\vec{\theta}') \frac{(\theta_2 - \theta_2')^2 - (\theta_1 - \theta_1')^2}{\left\{ (\theta_1 - \theta_1')^2 + (\theta_2 - \theta_2')^2 \right\}^2}$$
$$\gamma_2(\vec{\theta}) = \frac{\partial \alpha_1}{\partial \theta_2} = \frac{\partial \alpha_2}{\partial \theta_1} = \frac{1}{\pi} \int d\vec{\theta}' \kappa(\vec{\theta}') \frac{-2(\theta_1 - \theta_1')(\theta_2 - \theta_2')}{\left\{ (\theta_1 - \theta_1')^2 + (\theta_2 - \theta_2')^2 \right\}^2}$$

Weak lensing distortions

convergence K

difficult to measure

shear γ

can be measured by statistical analysis of galaxy shapes

Measuring shear

- each (j-th) galaxy have intrinsic shape ϵ_i^J (i=1,2)
- observed shape is affected by weak lensing distortion $\epsilon_i^{\text{obs},j} = \epsilon_i^j + \gamma_i$
- assume that orientations of galaxies are random on average $\langle \epsilon_i^j \rangle \approx \frac{1}{N} \sum_i \epsilon_i^j = 0$
- shear is measured by averaging observed galaxy shapes $\langle \epsilon_i^{\text{obs},j} \rangle \approx \frac{1}{N} \sum_i \epsilon_i^{\text{obs},j} = \gamma_i$

Measuring shear

Measuring shear

Shear is small

• weak lensing shear is typically very small

 $\epsilon_i^{\text{obs},j} = \epsilon_i^j + \gamma_i$ weak lensing shear intrinsic galaxy shape ≈ 0.3

 measurement noise from intrinsic galaxy shapes

 $\frac{S}{N} = \frac{\gamma_i}{\sqrt{\langle \epsilon_i^2 \rangle} / \sqrt{N}}$ need N \gtrsim 10³⁻⁴ galaxies for significant detection number of galaxies averaged

Convergence and shear: summary

- galaxy shapes are affected by weak lensing
- convergence induces uniform expansion, shear induces distortions
- shear can be calculated from convergence
- shear is measured in observations by averaging many galaxies' shapes

simulated by glafic

Simulation of lensing distortion

simulation

Tangential shear

- high density lens distorts shapes of background galaxies along tangential direction
- true both for strong and weak lensing
- measure lens mass dist.
 from tangential shear

Calculation of tangential shear

 for a given reference point, tangential and cross shear is defined by

Tangential and cross shear

tangential shear generated by lensing

cross shear

not generated by lensing, used for checking systematics

Calculations

 $\gamma_{\mathsf{x}}(\theta) = 0$

• from the definition of γ_1 and γ_2 , it is shown

(circular symmetric K, reference point = K center)

tangential shear

$$\gamma_{+}(\theta) = \bar{\kappa}(\langle \theta \rangle - \kappa(\theta)) = \frac{2}{\theta^{2}} \int_{0}^{\theta} d\theta' \,\theta' \,\kappa(\theta') - \kappa(\theta)$$

cross shear

Note: shear is non-local

$$\gamma_{+}(\theta) = \bar{\kappa}(\langle \theta \rangle - \kappa(\theta)) = \frac{2}{\theta^{2}} \int_{0}^{\theta} d\theta' \,\theta' \,\kappa(\theta') - \kappa(\theta)$$

• tangential shear at θ is determined by integrated mass at < θ , not just by mass density at θ

Tangential shear: summary

- gravitational lensing induces coherent tangential distortions around the lens
- tangential shear at some radius depends on integrated mass within that radius
- cross (45 degree rotated) shear vanishes and thus used to check systematic errors

Galaxy cluster

- massive concentration of dark matter
- useful site for studying dark matter

Galaxy cluster

Millennium Simulation Project

Abell 370, NASA/STScI

Cluster weak lensing analysis

- cluster is dark matter dominated system, which has been extensively studied using weak lensing
- I show an example of cluster weak lensing analysis based on tangential shear

Shape measurement

Galaxies: Intrinsic galaxy shapes to measured image:

Measuring tangential shear

- define an annulus around radius θ
- average tangential shear of all galaxies in the annulus

$$\bar{\gamma}_{+}(\theta) = \frac{\sum_{j} w_{j} \gamma_{+,j}}{\sum_{j} w_{j}}$$

j: label of galaxies in the bin w_j: weight of j-th galaxy

• its error is approx. given by

$$\sigma \approx \sqrt{\frac{\sum_{j} w_{j} (\gamma_{+,j} - \bar{\gamma}_{+})^{2}}{\sum_{j} w_{j}}} \frac{\sum_{j} w_{j}^{2}}{\left(\sum_{j} w_{j}\right)^{2}}}$$

Example: SDSSJ1138+2754

- massive cluster at z=0.45
- observed with
 Subaru Suprime cam (MO+2012)

Subaru/Suprime-cam gri-band

wide field image of Subaru S-cam

galaxies used for weak lensing analysis

compute tangential shear in each annulus

Tangential and cross shear profiles

Extracting information

- we can extract information on the cluster by fitting the observed shear profile with a model
- as examples, we consider SIS and NFW profiles

Singular Isothermal Sphere (SIS)

three-dimensional density profile

$$\rho(r) = \frac{\sigma_v^2}{2\pi G r^2}$$

σ_v: velocity dispersion

convergence and tangential shear profiles

$$\kappa(\theta) = \gamma_{+}(\theta) = \frac{\theta_{\text{Ein}}}{2\theta}$$
$$\theta_{\text{Ein}} = 4\pi \left(\frac{\sigma_{v}}{c}\right)^{2} \frac{D_{\text{ls}}}{D_{\text{os}}} \quad \theta_{\text{Ein}} \text{: Einstein radius}$$

SIS fitting result

- assuming (z_s)~1, velocity dispersion is derived to
 σ_v ~ 1200 km/s
- this corresponds to cluster mass of M > 10¹⁵ h⁻¹M_☉

Navarro-Frenk-White (NFW)

Navarro, Frenk & White (1996, 1997)

 density profile of dark matter halos in N-body simulations

$$\rho(r) = \frac{\rho_{\rm s}}{(r/r_{\rm s})(1 + r/r_{\rm s})^2}$$

 analytic expression of tangential shear profile available

(e.g., Wright & Brainerd 2000)

NFW fitting result

• good fit achieved • inferred cluster mass from the fit is $M \sim 10^{15} h^{-1} M_{\odot}$ 10^{-1} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-1} 10^{-1}

 θ [arcmin]

Example of analysis: summary

- tangential shear profile can be measured for each massive cluster
- by fitting observed profile with a model, we can extract information on dark matter distribution such as total mass

Weak lensing mass map

- tangential shear profile analysis assumed center of the lens and density profile used for fitting
- in fact `mass reconstruction' without any assumption is possible from weak lensing shear data (Kaiser & Squires 1993)

Mass reconstruction

recap: relation of convergence and shear

$$\gamma_{1}(\overrightarrow{\theta}) = \frac{1}{2} \left(\frac{\partial \alpha_{1}}{\partial \theta_{1}} - \frac{\partial \alpha_{2}}{\partial \theta_{2}} \right) = \frac{1}{\pi} \int d\overrightarrow{\theta'} \kappa(\overrightarrow{\theta'}) \frac{(\theta_{2} - \theta_{2}')^{2} - (\theta_{1} - \theta_{1}')^{2}}{\left\{ (\theta_{1} - \theta_{1}')^{2} + (\theta_{2} - \theta_{2}')^{2} \right\}^{2}}$$
$$\gamma_{2}(\overrightarrow{\theta}) = \frac{\partial \alpha_{1}}{\partial \theta_{2}} = \frac{\partial \alpha_{2}}{\partial \theta_{1}} = \frac{1}{\pi} \int d\overrightarrow{\theta'} \kappa(\overrightarrow{\theta'}) \frac{-2(\theta_{1} - \theta_{1}')(\theta_{2} - \theta_{2}')}{\left\{ (\theta_{1} - \theta_{1}')^{2} + (\theta_{2} - \theta_{2}')^{2} \right\}^{2}}$$

• indicating that convergence is obtained by $\kappa(\vec{\theta}) = \frac{1}{\pi} \int d\vec{\theta}' \left\{ \gamma_1(\vec{\theta}') + i\gamma_2(\vec{\theta}') \right\} D^*(\vec{\theta} - \vec{\theta}')$ $D^*(\vec{\theta}) = \frac{\theta_2^2 - \theta_1^2 + 2i\theta_1\theta_2}{|\vec{\theta}|^4}$

wide field image of Subaru S-cam

galaxies used for weak lensing analysis

observed shear () map

-1 | | | | | | · · · - / / / / / / / / / / /

21/11/11/11/11/11/

PI: Satoshi Miyazaki (NAOJ)

Hyper Suprime-Cam survey

- a new wide field camera mounted on Subaru
 (1.7 deg² covered by 900 million pixels)
- survey to observe ~1000 deg² of the sky to ~26 mag depth (2014-2021)

MO, Miyazaki, Hikage+ PASJ 70(2018)S26

Wide field mass map

coherent lensing distortion (shear)

inferred dark matter distribution (convergence)

3D mass reconstruction

 weak gravitational lensing analysis of galaxies at different distances from us

reconstruction of 3D mass distribution!

MO, Miyazaki, Hikage+ PASJ 70(2018)S26

Three-dimensional mass map

*largest three-dimensional dark matter map ever created

Summary

- weak gravitational lensing provides a powerful means of studying of dark matter distribution
- distortions of background galaxies (shear) are related with projected surface mass density (convergence)
- we need many galaxies with accurate shape measurements (i.e., wide and deep imaging)