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1 Preface

1.1 Friedmann equation

I start with a recap of the standard cosmological model without any perturbation, mainly to fix the
notation that I use throughout this note. For more details on this part, please see textbooks (e.g.,
Dodelson, 2003; Weinberg, 2008; Matsubara, 2010). Once we accept the cosmological principle,
which states that the matter distribution in the Universe is homogeneous and isotropic when viewed
on a sufficiently large scale, the spacetime metric is described by the so-called Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric

ds2 = −c2dt2 + a2
[
dχ2 + f2

K(χ)
(
dθ2 + sin2 θdφ2

)]
, (1.1)

fK(χ) :=


(1/
√
K) sin

(√
Kχ
)

(K > 0),

χ (K = 0),

(1/
√
−K) sinh

(√
−Kχ

)
(K < 0),

(1.2)

and K specifies the curvature of the space such at the Universe is closed when K > 0, flat when
K = 0, and open when K < 0.

The evolution equation of the FLRW Universe is obtained from the Einstein equation

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (1.3)

where Rµν is the Ricci curvature tensor and R is the scalar curvature, both of which are computed
from the metric tensor gµν that contains full information on the structure of spacetime. Λ is cosmo-
logical constant and Tµν is a source term called the stress-energy tensor, which describes the energy
density and momentum in spacetime. For perfect fluid, it takes the form Tµν = diag(−ρ, p, p, p),
where ρ and p are energy density and pressure of fluid, respectively. By plugging in the metric (1.1)
for the Einstein equation, I obtain(

ȧ

a

)2

=
8πG

3c2

∑
α

ρα −
c2K

a2
+
c2Λ

3
, (1.4)

ä

a
= −4πG

3c2

∑
α

(ρα + 3pα) +
c2Λ

3
, (1.5)

where the dot denote derivative with respect to time t and summations run over all fluid components.
These equations are called Friedmann equations. Note that by moving cosmological constant to right
hand side in equation (1.3), it can be regarded as one of fluid components with ρ = c4Λ/8πG and
p = −c4Λ/8πG.

In cosmological analysis, it is customary to define the following parameters; the Hubble parameter

H :=
ȧ

a
, (1.6)
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the critical density of the Universe

ρcr :=
3c2H2

8πG
, (1.7)

the density parameter

Ωα :=
ρα
ρcr

, (1.8)

and the curvature density parameter

ΩK := − c2K

a2H2
. (1.9)

With these parameters, the Friedmann equation (1.4) is simplified as

1 =
∑
α

Ωα, (1.10)

where in this expression I include both ΩΛ and ΩK in Ωα.
Now I show the time evolution of the scale factor and density parameters more explicitly. I

express present values of parameters defined in equations (1.6)–(1.9) by subscript 0 i.e., H0, ρcr0,
Ωα0, and ΩK0. For the Universe that consists of the matter density Ωm, the radiation density Ωr,
the curvature density parameter ΩK, and cosmological constant ΩΛ, the Friedmann equation (1.10)
is expressed as

H2

H2
0

= Ωr0a
−4 + Ωm0a

−3 + ΩK0a
−2 + ΩΛ0. (1.11)

Note that the scale factor is related to redshift as

1 + z =
1

a
. (1.12)

The present Universe corresponds to z = 0 and a = 1.

1.2 Distances

Adopting an observed as the origin of the spherical coordinates in the metric (1.1), χ can be seen
as the comoving radial distance. From the null geodesics (ds2 = 0), one can compute χ to redshift
z (cosmic time t) as

χ(z) =

∫ t

t0

c dt′

a(t′)
= c

∫ z

0

dz′

H(z′)
. (1.13)

Using equations (1.11) and (1.12) the Hubble parameter can expressed as a function of redshift.
Ignoring the radiation component, which makes negligible contribution to distances in the late
Universe, H(z) is explicitly written as

H(z) = H0

[
Ωm0(1 + z)3 + ΩK0(1 + z)2 + ΩΛ0

]
. (1.14)

From equation (1.13) one can derive other distances, such as the angular diameter distance

DA(z) =
fK (χ(z))

1 + z
, (1.15)

and the luminosity distance
DL(z) = (1 + z)fK (χ(z)) . (1.16)
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2 Lens equation

2.1 Metric

I now discuss light propagation in the inhomogeneous Universe, which is the main focus of this
lecture. I start with assuming the following spacetime metric

ds2 = −
(

1 +
2Φ

c2

)
c2dt2 + a2

(
1− 2Ψ

c2

)[
dχ2 + f2

K(χ)
(
dθ2 + sin2 θdφ2

)]
, (2.1)

where Φ and Ψ are referred to as gravitational potential and curvature perturbation, respectively.
Both Φ and Ψ are assumed to be small i.e., |Φ/c2|, |Ψ/c2| � 1, which is relevant in most astronomical
situations except for a few cases (e.g., light deflection very near black holes as studied in Event
Horizon Telescope Collaboration et al. 2019). Note that the metric above corresponds to adopting
the conformal Newtonian gauge (or longitudinal gauge), although here I do not go into detail on
the gauge freedom as this lecture focuses on sub-horizon dynamics and observations.

Calculations in this metric are summarized in Appendix A. Although the Einstein equation
indicates, at lease in the range of interest of this lecture, Φ = Ψ (equation A.32), here I treat Φ and
Ψ separately until I derive the lens equation, in order to show their dependence on the lens equation
explicitly. In fact some modified gravity theories predict Φ 6= Ψ, and hence gravitational lensing
provides a means of testing those modified gravity theories in combination with other cosmological
observations (e.g., Jain & Khoury, 2010).

2.2 Geodesic equation

In deriving the lens equation, it is useful to treat χ (line-of-sight direction) and θ and φ (position
on the sky) separately. For this purpose I write the metric (2.1) as

ds2 = −
(

1 +
2Φ

c2

)
c2dt2 + a2

(
1− 2Ψ

c2

)[
dχ2 + f2

K(χ)ωabdx
adxb

]
(a, b = 2, 3), (2.2)

ωabdx
adxb := dθ2 + sin2 θdφ2. (2.3)

The light path in this metric is computed by the geodesic equation

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0, (2.4)

where λ is an affine parameter. It is convenient to replace λ to χ for our purpose. Using the chain
rule, I obtain

d2xµ

dχ2
+ Γµαβ

dxα

dχ

dxβ

dχ
− d2λ

dχ2

(
dλ

dχ

)−1 dxµ

dχ
= 0. (2.5)

From the result by setting µ = 1 (xµ = χ) in equation (2.5), one can simplify equation (2.5) further
as

d2xµ

dχ2
+

(
Γµαβ − Γ1

αβ
dxµ

dχ

)
dxα

dχ

dxβ

dχ
= 0. (2.6)
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Calculations of equation (2.6) requires Christoffel symbols, which are summarized in Appendix A,
as well as c dt/dχ that is derived from the null condition

gµν
dxµ

dχ

dxν

dχ
= 0. (2.7)

From equation (2.2),
c dt

dχ
= −a

[
1− Φ

c2
− Ψ

c2
+
f2
K(χ)

2
ωab

dxa

dχ

dxb

dχ

]
, (2.8)

up to the first order in Φ and second order in dxa/dχ. In fact, for the evaluation of equation (2.6) I
need only the zero-th order result, c dt/dχ = −a, but I show this result including perturbations as it
will be used for another derivation of the lens equation discussed later. I also note that the sign of
equation (2.8) is chosen as such because I consider the light path from a distant object and χ = 0 is
chosen to be the location of an observer. By calculating the angular part (µ = a) of equation (2.6),
I obtain the following differential equation

d2xa

dχ2
+ 2

f ′K(χ)

fK(χ)

dxa

dχ
+
ωab (Φ,b + Ψ,b)

c2f2
K(χ)

= 0. (2.9)

By integrating equation (2.9) twice, I obtain

xa(χs)− xa(0) = − 1

c2

∫ χs

0
dχ′

1

f2
K(χ′)

∫ χ′

0
dχωab [Φ,b(χ,θ(χ)) + Ψ,b(χ,θ(χ))]

= − 1

c2

∫ χs

0
dχωab [Φ,b(χ,θ(χ)) + Ψ,b(χ,θ(χ))]

∫ χs

χ
dχ′

1

f2
K(χ′)

= − 1

c2

∫ χs

0
dχ

fK(χs − χ)

fK(χ)fK(χs)
ωab [Φ,b(χ,θ(χ)) + Ψ,b(χ,θ(χ))] , (2.10)

where θ = (x2, x3) specifies the angular position of light ray on the sky, which is a function of χ due
to gravitational lensing deflections. Defining (∂θf)a := ωabf,b, I finally obtain the lens equation for
a source at the comoving radial distance χ = χs (i.e., source redshift zs with χ(zs) = χs)

θ(χs) = θ(0)− 1

c2

∫ χs

0
dχ

fK(χs − χ)

fK(χ)fK(χs)
∂θ [Φ(χ,θ(χ)) + Ψ(χ,θ(χ))] . (2.11)

This equation describes a mapping between the source position θ(χs) (i.e., the angular position that
would be observed in absence of gravitational lensing) and the image position θ(0) (i.e., the angular
position that is actually observed). Figure 1 presents a schematic picture showing the source and
image positions.

However, equation (2.11) contains θ(χ), which is known only after solving the lens equation, in
the integrand, and therefore is an integral equation that is difficult to solve. A useful approximation
that is commonly adopted is the Born approximation (Born, 1926) in which θ(χ) in the integrand
is simply replaced by θ(0) i.e.,

θ(χs) = θ(0)− 1

c2

∫ χs

0
dχ

fK(χs − χ)

fK(χ)fK(χs)
∂θ [Φ(χ,θ(0)) + Ψ(χ,θ(0))] . (2.12)

This corresponds to the lowest order iterative approximation of the integral equation. It is shown
that this approximation is sufficiently accurate for current weak lensing analysis (e.g., Krause &
Hirata, 2010).
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observer

𝞆=0𝞆=𝞆s

source 
𝛉(𝞆s)=β

image 
𝛉(0)=𝛉

Figure 1: Schematic picture showing the source and image positions.

2.3 Fermat’s principle

The derivation of the lens equation (equations 2.11 and 2.12) from the geodesic equation as shown in
Section 2.2 is the standard approach. An alternative approach would be to use Fermat’s principle,
which states that the light ray path is determined such that its travel time T is stationary with
respect to variations of the path

δT = δ

∫
dt = 0. (2.13)

I can rewrite this as

δ

∫
dη = 0, (2.14)

where dη := dt/a is the so-called the conformal time, because η is a monotonic function of t and
all variations are performed at fixed upper limits (see Schneider, 1985). Using equation (2.8), I can
rewrite this as

δ

∫ χs

0
dχ

[
1− Φ

c2
− Ψ

c2
+
f2
K(χ)

2
ωab

dxa

dχ

dxb

dχ

]
= 0. (2.15)

If I define L as

L

(
xa,

dxa

dχ
, χ

)
:= 1− Φ

c2
− Ψ

c2
+
f2
K(χ)

2
ωab

dxa

dχ

dxb

dχ
, (2.16)

equation (2.15) suggests that L satisfies the Euler-Lagrange equation

d

dχ

(
∂L

∂(dxa/dχ)

)
− ∂L

∂xa
= 0. (2.17)

This leads to
d

dχ

[
f2
K(χ)ωab

dxb

dχ

]
+

1

c2
(Φ,a + Ψ,a) = 0, (2.18)

which is identical to equation (2.9). Therefore, by conducting the same calculation as done in
Section 2.2 one can derive the lens equation from the Fermat’s principle.
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θ1

θ2 𝞆

Figure 2: Locally flat coordinates on the sky.

3 Convergence and shear

3.1 Definition

In what follows, I simplify the Born-approximated lens equation (2.12) a bit further. First, since
Φ = Ψ within the range of our interest, below I only use Φ. Second, although the angular coordinates
defined by equation (2.3) has been assumed in the calculations above, in fact the results do not
depend on the specific choice of the angular coordinates, so for simplicity I switch to locally flat
coordinates (see Figure 2)

ωabdx
adxb = ω̃abdx̃

adx̃b := dθ2
1 + dθ2

2. (3.1)

Following the convention, I also denote the image and source positions as (see also Figure 1)

θ(0) = θ, (3.2)

θ(χs) = β. (3.3)

As a result, the lens equation is written as

β = θ − 2

c2

∫ χs

0
dχ

fK(χs − χ)

fK(χ)fK(χs)
∂θΦ(χ,θ), (3.4)

which is, again, essentially a mapping between the image position θ = (θ1, θ2) and the source
position β = (β1, β2). The second term of the right hand side of equation (3.4) is referred to as
the deflection angle and is often denoted as α, which is a function of the image position θ given
the Born approximation. It is possible to describe the deflection angle by a gradient of the so-called
lens potential ψ

β = θ −α(θ), (3.5)



3 CONVERGENCE AND SHEAR 9

α(θ) := ∂θψ, (3.6)

ψ(θ) :=
2

c2

∫ χs

0
dχ

fK(χs − χ)

fK(χ)fK(χs)
Φ(χ,θ). (3.7)

Since there is no way to infer the source position β for a distant object at θ, one cannot directly
detect gravitational lensing effects for distant objects from their positions on the sky. However,
as I will show below, gravitational lensing also distorts shapes of distant objects, from which one
can detect gravitational lensing effects in a statistical sense. Such distortions can be derived from
equation (3.5), by considering the following Jacobi matrix

A :=
∂β

∂θ
= I − ∂α

∂θ
, (3.8)

where I denotes a 2×2 identity matrix. Note that A describes a mapping from an image to a source
(rather than a source to an image) i.e., a shape of an image with the shape δθ is mapped into a
source with the shape δβ = Aδθ. The matrix A can be decomposed into trace and traceless part as

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (3.9)

where κ and γi are convergence and shear defined as

κ :=
1

2
(ψ,θ1θ1 + ψ,θ2θ2) , (3.10)

γ1 :=
1

2
(ψ,θ1θ1 − ψ,θ2θ2) , (3.11)

γ2 := ψ,θ1θ2 . (3.12)

Figure 3 shows how a shape of source is distorted due to κ, γ1, and γ2. Sometimes γ1 and γ2 are
combined into complex shear

γ := γ1 + iγ2, (3.13)

which will be useful for various calculations as shown below.
A caveat is that γ depends on the choice of coordinates (θ1, θ2), which is obvious also from

Figure 3. Suppose the coordinate system is rotated by an angle α i.e., θ′ = e−αθ in the complex
plane expression, κ and γ are transformed as

κ′ = κ, γ′ = e−2iαγ, (3.14)

which indicates that γ is a spin-2 field (i.e., γ is not a vector).
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𝛉1

𝛉2

𝛉1

𝛉2

𝛉1

𝛉2κ>0 𝜸1>0 𝜸2>0

Figure 3: Distortions of galaxy shapes by gravitational lensing. Dotted circles show the original
shape of a source, which is assumed to be circular symmetric. Solid lines show shapes after the
gravitational lensing effect.

3.2 Measurements

When the effect of gravitational lensing is very strong, one can detect it directly from highly dis-
torted shapes of galaxies or multiple images of sources. However, in this lecture I focus only on
weak gravitational lensing where signals are weak so that they need to be detected statistically by
combining many sources. Among various techniques to detect weak gravitational lensing, the most
standard technique is to use shapes of source galaxies, which I will explain below.

Here I discuss a simple way to measure galaxy shapes using second moments Qab of their surface
brightness distributions I(θ). For each galaxy, Qab is defined as

Qab :=

∫
dθI(θ)θaθb∫
dθI(θ)

, (3.15)

adopting the origin of θ to the center of the galaxy. In a manner similar to equation (3.13), I define
complex ellipticity ε of a galaxy as

ε :=
Q11 −Q22 + 2iQ12

Q11 +Q22
. (3.16)

Using the matrix A (equation 3.9), the corresponding second moments in the source plane Q
(s)
ab is

given by

Q
(s)
ab :=

∫
dβI(β)βaβb∫
dβI(β)

≈ AacAbdQcd, (3.17)

where the conservation of the surface brightness distribution due to gravitational lensing (I(s)(β) =
I(θ)) is adopted, and adopting

∫
dβ =

∫
dθ|detA| ≈ |detA|

∫
dθ given that the size of each galaxy

is sufficiently small. By a straightforward calculation, it is shown that

ε(s) =
(1− κ)2ε− 2(1− κ)γ + γ2ε∗

(1− κ)2 + |γ|2 − 2(1− κ)Re(γε∗)
. (3.18)
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This expression is simplified further by using reduced shear g that is defined by

g :=
γ

1− κ. (3.19)

Using reduced shear g equation (3.18) is simplified as

ε(s) =
ε− 2g + g2ε∗

1 + |g|2 − 2Re(gε∗)
. (3.20)

An important fact is that weak gravitational lensing in fact probes reduced shear g rather than γ,
although in the weak lensing limit κ� 1 and hence g ≈ γ (see also Section 3.4), which can be safely
assumed in most situations except for e.g., the analysis near centers of massive clusters. It is also
worth noting that there is an inverse relation of equation (3.20)

ε =
ε(s) + 2g + g2ε(s)∗

1 + |g|2 + 2Re(gε(s)∗)
. (3.21)

From equation (3.20) or (3.21), one can estimate shear for an ensemble of galaxies, assuming that
galaxies are intrinsically randomly oriented i.e., 〈ε(s)〉 = 0. In fact this assumption is not correct as
it it known that orientations of galaxies are intrinsically aligned. While this intrinsic alignment (see
e.g., Troxel & Ishak, 2015) is important for cosmic shear analysis, here I ignore it just for simplicity.
Accepting 〈ε(s)〉 = 0 and ignoring higher order terms,

〈ε〉 ≈ 〈ε(s) + 2g〉 ≈ 2g ≈ 2γ, (3.22)

indicating that we can estimate shear γ by averaging ellipticities of many galaxies that share the
same shear value.

3.3 Connection with density fluctuations

Equation (3.10) indicates that convergence is written as the Laplacian of the lens potential in the
angular coordinates, i.e., κ = (1/2)∆θψ. Therefore, by using the Poisson equation (equation A.34)
one can directly connect convergence with density fluctuations of the Universe, δm (equation A.33).
Specifically, since the three-dimensional Laplace operator is written as

(3)∆Φ =
1

f2
K(χ)

∂

∂χ

(
f2
K(χ)

∂Φ

∂χ

)
+

1

f2
K(χ)

∆θΦ, (3.23)

convergence is computed as

κ(θ) =
1

c2

∫ χs

0
dχ

fK(χs − χ)

fK(χ)fK(χs)
∆θΦ

=
1

c2

∫ χs

0
dχ
fK(χs − χ)fK(χ)

fK(χs)

[
(3)∆Φ− 1

f2
K(χ)

∂

∂χ

(
f2
K(χ)

∂Φ

∂χ

)]
' 1

c2

∫ χs

0
dχ
fK(χs − χ)fK(χ)

fK(χs)
(3)∆Φ

=
4πG

c4

∫ χs

0
dχ
fK(χs − χ)fK(χ)

fK(χs)
ρma

2δm(χ,θ), (3.24)
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Figure 4: Left: The comoving radial distance χ as a function of redshift (equation 1.13). Right:
The weight function W (χ) defined by equation (3.28) for several different source redshifts zs. Here
and in what follows Planck 2018 best-fitting cosmological parameters (Planck Collaboration et al.,
2018) are adopted.

where the approximation is based on the fact that the term proportional to Φ itself, which appears
after the integration by parts, is quite small given O(10−5). Using Ωm0 it can also be rewritten as

κ(θ) =
3Ωm0H

2
0

2c2

∫ χs

0
dχ
fK(χs − χ)fK(χ)

fK(χs)

δm(χ,θ)

a
. (3.25)

Once convergence κ is obtained from a given density field δ, the lens potential ψ from equation (3.10)
using Green’s function

ψ(θ) = 2

∫
dθ′G(θ,θ′)κ(θ′) =

1

π

∫
dθ′ ln

∣∣θ − θ′∣∣κ(θ′), (3.26)

where locally flat sky is assumed obviously and G(x,x′) = (1/2π) ln |x− x′| is Green’s function for
two-dimensional Laplace operator. Therefore, from a given density fluctuations, one can derive the
lens potential ψ from equation (3.26), and then derive shear from equations (3.11) and (3.12).

Equations (3.24) and (3.25) indicate that κ is derived by integrating density fluctuations along
the line-of-sight with a weight

κ(θ) =

∫ χs

0
dχW (χ)δm(χ,θ), (3.27)

W (χ) :=
4πG

c4

fK(χs − χ)fK(χ)

fK(χs)
ρma

2 =
3Ωm0H

2
0

2c2

fK(χs − χ)fK(χ)

a fK(χs)
. (3.28)

In Figure 4 we show W (χ) for several different source redshifts, along with the relation between χ(z)
and z. It is found that gravitational lensing mainly probes matter fluctuations at the half way to the
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source i.e., χ ≈ χs/2, although the weight W (χ) is sufficiently broad so that density fluctuations for
a wide range of redshift contributes to the signal. It is also seen that the peak height of the weight
function increases with increasing source redshift, indicating that gravitational lensing signals tend
to be higher for more distant sources.

3.4 Back-of-the-envelope estimates of signal and noise

Since both κ and γ are second derivatives of the same lens potential, they are expected to be on the
same order. Here I use equation (3.25) to obtain rough estimates of the amplitude of κ. Adopting
crude approximations of δm/a ≈ δm(z = 0) and fK(χs − χ)fK(χ)/fK(χs) being a rectangular with
the width χs and the height χs/8, I have

κ(θ) ≈ 3Ωm0

16

χ2
s

c2/H2
0

∑ ∆χ

χs
δm(z = 0). (3.29)

I need to specify the scale of fluctuations, because δm is a random variable and its variance is a
function of the smoothing scale such that density fluctuations are larger on small scales. Let’s set
the comoving size of fluctuations to be R, then it is natural to set ∆χ = R and the number of
independent fluctuations along the line-of-sight to be N = χs/R. Therefore, the root-mean square
of κ for the comoving scale R, σκ(R), is crudely estimated as

√
κ2(R) ≈ 3Ωm0

16

χ2
s

c2/H2
0

√
δ2

m(R)√
χs/R

≈ 0.006

(
χs

3h−1Gpc

)1.5( R

30h−1Mpc

)1/2√
δ2

m(R, z = 0). (3.30)

The root-mean square of density fluctuations can be estimated from the nonlinear power spectrum
(Takahashi et al., 2012), which is

√
δ2

m ≈ 4 at R = 1h−1Mpc (cluster scale), ≈ 0.5 at R = 10h−1Mpc
(weakly nonlinear scale), and ≈ 0.03 at R = 100h−1Mpc (large-scale structure scale). Inserting these
numbers, I obtain

√
κ2(R,χs = 3h−1Gpc) ≈ 0.004 (R = 1h−1Mpc), (3.31)

≈ 0.002 (R = 10h−1Mpc), (3.32)

≈ 0.0003 (R = 100h−1Mpc), (3.33)

which indicates that κ (and hence |γ|) are indeed much smaller than unity, and its typical size is
scale-dependent such that signals are larger on small scales.

I now discuss noise. Equation (3.22) suggests that an error σγ on the estimate of γ using Ngal

source galaxies is

σγ =
σε/2√
Ngal

, (3.34)

where σε/2 is the root-mean-square of intrinsic ellipticities of galaxies (ε(s)/2) and is typically
σε ≈ 0.4. The fact that σε is much larger than expected signals shown in equations (3.31)–(3.33)
immediately suggests that a large number of galaxies needs to be used in order to detect weak
gravitational lensing signals. For instance, assuming κ ≈ |γ|, it can be seen that one needs to use
Ngal = 106 galaxies in order to detect the signal at R = 10h−1Mpc (equation 3.32) with signal-
to-noise ratio of S/N = 5. Modern surveys use Ngal = 107 or more galaxies to measure weak
gravitational lensing signals at various scales (e.g., Hikage et al., 2019).
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4 Cosmic shear power spectrum

4.1 Fourier transform and E/B decomposition

One of the most popular ways to extract cosmological weak gravitational lensing signals is to mea-
sure two-point correlation functions, or their counterparts in Fourier space, power spectra. Since
calculations are more convenient in Fourier space, here I introduce convergence and shear in Fourier
space and discuss their properties.

I again adopt locally flat coordinates, and use the following convention to perform Fourier trans-
form

κ(θ) =

∫
d`

(2π)2
κ̃(`)ei`·θ, (4.1)

κ̃(`) =

∫
dθ κ(θ)e−i`·θ. (4.2)

Similarly I denote Fourier transform of complex shear as γ̃.
As shown in equation (3.14) shear is not invariant under coordinate rotation. This coordinate

rotation also changes γ̃ as γ̃′ = e−2iαγ̃. From γ̃, I define new fields γ̃E and γ̃B that are designed to
be invariant under coordinate rotation

γ̃E := cos (2φ`) γ̃1 + sin (2φ`) γ̃2, (4.3)

γ̃B := − sin (2φ`) γ̃1 + cos (2φ`) γ̃2, (4.4)

where φ` is a polar angle in Fourier space i.e., (`1, `2)=(|`| cosφ`, |`| sinφ`). They satisfy

γ̃E + iγ̃B = e−2iφ` γ̃. (4.5)

Under coordinated rotation with angle α, γ̃ → e−2iαγ̃ and φ` → φ` − α, and hence the right hand
side of equation (4.5) does not change.

The physical meaning of γ̃E and γ̃B becomes clearer once they are transformed to real space.
From equation (4.5), I can obtain their expressions in real space as

γE(θ) + iγB(θ) =

∫
d`

(2π)2
ei`·θ

∫
dθ′ γ(θ′)e−i`·θ

′
∫
dθ′′D(θ′′)e−i`·θ

′′

=

∫
dθ′γ(θ′)D(θ − θ′), (4.6)

where I used a useful formula for Dirac delta function δD(θ)∫
d`

(2π)2
ei`·θ = δD(θ), (4.7)

and D(θ) is Fourier transform of e−2iφ` and is given by

D(θ) = − 1

π

e−2iφθ

|θ|2
= − 1

π

θ2
1 − θ2

2 − 2iθ1θ2

|θ|4
, (4.8)
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𝜸E(𝛉) > 0

𝛉'-𝛉

𝜸B(𝛉) > 0

𝛉'-𝛉
ɸ𝛉'-𝛉 ɸ𝛉'-𝛉

𝜸E(𝛉) < 0

𝛉'-𝛉

𝜸B(𝛉) < 0

𝛉'-𝛉
ɸ𝛉'-𝛉 ɸ𝛉'-𝛉

𝜸+(𝛉';𝛉)

𝜸+(𝛉';𝛉)

𝜸×(𝛉';𝛉)

𝜸×(𝛉';𝛉)

Figure 5: Meaning of E-mode and B-mode shear (see equation 4.9). E-mode shear γE(θ) is essentially
summation of tangential shear γ+(θ′; θ) (equation 4.10) around θ, and B-mode shear γE(θ) is
summation of cross shear γ×(θ′; θ) (equation 4.11) around θ.

with φθ being a polar angle in real space i.e., (θ1, θ2)=(|θ| cosφθ, |θ| sinφθ). Inserting this expression
to equation (4.6), I obtain

γE(θ) + iγB(θ) =
1

π

∫
dθ′

γ+(θ′; θ)∣∣θ − θ′∣∣2 + i
1

π

∫
dθ′

γ×(θ′; θ)∣∣θ − θ′∣∣2 , (4.9)

where

γ+(θ′; θ) := −Re
[
γ(θ′) e−2iφθ′−θ

]
= −γ1(θ′) cos(2φθ′−θ)− γ2(θ′) sin(2φθ′−θ), (4.10)

γ×(θ′; θ) := −Im
[
γ(θ′) e−2iφθ′−θ

]
= γ1(θ′) sin(2φθ′−θ)− γ2(θ′) cos(2φθ′−θ). (4.11)

From the definition of shear, it is easily found that γ+(θ′; θ) and γ×(θ′; θ) represents tangential
shear and its 45◦ rotated version (sometimes referred to as cross shear) around θ, respectively. Thus
in analogy to electromagnetics, γE and γB is E-mode and B-mode shear, respectively. Figure 5 gives
an explanation of E-mode and B-mode shear.
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Now let’s see the relation of γE and γB with convergence. From equations (3.10)–(3.12) in Fourier
space convergence is related with shear as

κ̃ = e−2iφ` γ̃. (4.12)

This indicates
γE = κ, γB = 0, (4.13)

i.e., gravitational lensing produces only E-mode shear. Note that equation (4.13) is exactly true
only under Born approximation. Higher order effects produce small B-mode, which is ∼ 3 orders
of magnitude smaller than E-mode and hence can be ignored in most cases (e.g., Krause & Hirata,
2010).

4.2 Definition of power spectrum

The power spectrum, which is Fourier transform of two-point correlation function, plays a central
role in cosmology. For instance, in the three-dimensional space the two-point correlation function
of density fluctuations is usually defined as

ξm(r) := 〈δm(r′)δm(r′ + r)〉, (4.14)

where r = |r| is the separation and 〈. . .〉 denotes ensemble average. From this, the correlation of
density fluctuations in Fourier space is computed as

〈δ̃(k)δ̃(k′)〉 =

∫
dr′ e−ik·r

′
∫
dr′′ e−ik

′·r′′〈δm(r′)δm(r′′)〉 = (2π)3δD(k + k′)

∫
dr e−ik·rξm(r),

(4.15)
where I used ∫

dr

(2π)3
eik·r = δD(k). (4.16)

The matter power spectrum Pm(k) as a function of wavenumber k := |k| is defined by

〈δ̃(k)δ̃(k′)〉 := (2π)3δD(k + k′)Pm(k), (4.17)

which satisfies

Pm(k) =

∫
dr e−ik·rξm(r) = 4π

∫
r2dr

sin(kr)

kr
ξm(r), (4.18)

indicating that the power spectrum is given by Fourier transform of two-point correlation function
(known as the Wiener–Khinchin theorem). The two-point correlation function and the power spec-
trum depends only on norms of r and k, respectively, because the Universe is on average isotropic.

Power spectra of convergence and shear can be defined in a similar fashion. Specifically, I define
angular power spectra C` as a function of ` := |`| as

〈κ̃(`)κ̃(`′)〉 := (2π)2δD(`+ `′)Cκκ` , (4.19)

and

Cκκ` =

∫
dθ e−iθ·`ωκκ(θ) = 2π

∫
θdθ J0(`θ)ωκκ(θ), (4.20)
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where ωκκ(θ) is angular two-point correlation function as a function of θ := |θ| defined by

ωκκ(θ) := 〈κ(θ′)κ(θ′ + θ)〉, (4.21)

and J0(x) is the zeroth order Bessel function. In deriving the equation above, I used an integral
formula of Bessel function Jn(x)

Jn(x) =
1

2πin

∫ 2π

0
einφ+ix cosφdφ. (4.22)

In a manner similar to above, I can define power spectrum and correlation functions for various shear
components. A caveat is that γ1 and γ2 are coordinate-dependent, and therefore their correlation
functions and power spectra depend on directions of θ and `, respectively. Specifically I write

〈γ̃i(`)γ̃j(`′)〉 := (2π)2δD(`+ `′)C
γiγj
` , (4.23)

C
γiγj
` =

∫
dθ e−iθ·`ωγiγj (θ), (4.24)

ωγiγj (θ) := 〈γi(θ′)γi(θ′ + θ)〉, (4.25)

where γi and γj are γ1, γ2, γ+, γ×, γE, γB, as well as complex representation of shear γ (equa-
tion 3.13). From equation (4.13), it is found Cκκ` = CγEγE` and CγBγB` = 0 under Born approxima-
tion.

4.3 Connection with two-point correlation function

While there are several different approaches to study correlations of shear in real space, here I focus
on the following two correlation functions (e.g., Kaiser, 1992)

ξ±(θ) := ωγ+γ+(θ)± ωγ×γ×(θ), (4.26)

where ωγ+γ+(θ) and ωγ×γ×(θ) are defined by

ωγ+γ+(θ) := 〈γ+(θ′;θ′ + θ)γ+(θ′ + θ;θ′)〉, (4.27)

ωγ×γ×(θ) := 〈γ×(θ′;θ′ + θ)γ×(θ′ + θ;θ′)〉, (4.28)

where γ+ and γ× has been defined in equations (4.10) and (4.11). Note that these are coordinate-
independent correlation functions, and also that ωγ+γ×(θ) = 0 given that the Universe is statistically
invariant under a parity transformation. From the definitions of γ+ and γ×,

ωγ+γ+(θ) = cos2(2φθ)ωγ1γ1(θ) + sin2(2φθ)ωγ2γ2(θ) + 2 sin(2φθ) cos(2φθ)ωγ1γ2(θ), (4.29)

ωγ×γ×(θ) = sin2(2φθ)ωγ1γ1(θ) + cos2(2φθ)ωγ2γ2(θ)− 2 sin(2φθ) cos(2φθ)ωγ1γ2(θ), (4.30)
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and hence ξ±(θ) are expressed as

ξ+(θ) = ωγ1γ1(θ) + ωγ2γ2(θ) = ωγγ
∗
(θ), (4.31)

ξ−(θ) = cos(4φθ) [ωγ1γ1(θ)− ωγ2γ2(θ)] + 2 sin(4φθ)ωγ1γ2(θ) = Re
[
e−4iφθωγγ(θ)

]
. (4.32)

On the other hand, from equations (4.3) and (4.4) I also have

Cγγ
∗

` = CγEγE` + CγBγB` , (4.33)

Cγγ` = e4iφ`
(
CγEγE` − CγBγB`

)
, (4.34)

where I used the fact that CγEγB = 0 again due to the invariance under a parity transformation.
Combining the equations above, I finally obtain

ξ+(θ) =

∫
d`

(2π)2

(
CγEγE` + CγBγB`

)
ei`·θ =

∫ ∞
0

`d`

2π

(
CγEγE` + CγBγB`

)
J0(`θ), (4.35)

ξ−(θ) = Re

[
e−4iφθ

∫
d`

(2π)2
e4iφ`

(
CγEγE` − CγBγB`

)
ei`·θ

]
=

∫ ∞
0

`d`

2π

(
CγEγE` − CγBγB`

)
J4(`θ),

(4.36)
where an integral formula for the Bessel function (equation 4.22) has been used. This result indicates
that two-point correlation functions of shear are indeed related with angular power spectrum of shear.

4.4 Calculation of power spectrum

I now evaluate cosmic shear power spectrum Cκκ` = CγEγE` . From equations (3.27) and (4.2), Fourier
transform of convergence is given by

κ̃(`) =

∫
dθ e−i`·θ

∫ χs

0
dχW (χ)δm(χ,θ)

=

∫
dθ e−i`·θ

∫ χs

0
dχW (χ)

∫
dk

(2π)3
δ̃m(k)eik·r

=

∫
dθ e−i`·θ

∫ χs

0
dχW (χ)

∫
dk‖

2π

dk⊥
(2π)2

δ̃m(k‖,k⊥)ei{k‖χ+fK(χ)k⊥·θ}

=

∫ χs

0
dχ

W (χ)

f2
K(χ)

∫
dk‖

2π
δ̃m

(
k‖,

`

fK(χ)

)
eik‖χ, (4.37)
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where k‖ and k⊥ are wavenumbers that are parallel and perpendicular to the line-of-sight direction,
respectively. From this expression, correlation of convergence in Fourier space is

〈κ̃(`)κ̃(`′)〉 =

∫ χs

0
dχ

W (χ)

f2
K(χ)

∫ χs

0
dχ′

W (χ′)

f2
K(χ′)

∫
dk‖

2π

∫ dk′‖

2π
e
i(k‖χ+k′‖χ

′)

×
〈
δ̃m

(
k‖,

`

fK(χ)

)
δ̃m

(
k′‖,

`′

fK(χ′)

)〉
=

∫ χs

0
dχ

W (χ)

f2
K(χ)

∫ χs

0
dχ′

W (χ′)

f2
K(χ′)

∫
dk‖

2π
eik‖(χ−χ

′)Pm

(√
k2
‖ +

`2

f2
K(χ)

)

×(2π)2δD

(
`

fK(χ)
+

`′

fK(χ′)

)
. (4.38)

I now make the following additional approximation. When k‖ � `/fK(χ), due to the rapid oscillation

by eik‖(χ−χ
′) it vanishes after integrations over χ, given that W (χ) is sufficiently broad (see Figure 4).

Hence I consider only modes with k‖ � `/fK(χ), which results in

∫
dk‖

2π
eik‖(χ−χ

′)Pm

(√
k2
‖ +

`2

f2
K(χ)

)
≈ δD(χ− χ′)Pm

(
`

fK(χ)

)
, (4.39)

which is called the Limber approximation (Limber, 1954). By performing the integration over χ′, I
now have a simplified expression for the correlation

〈κ̃(`)κ̃(`′)〉 = (2π)2δD
(
`+ `′

) ∫ χs

0
dχ
W 2(χ)

f2
K(χ)

Pm

(
`

fK(χ)
;χ

)
, (4.40)

where I added the argument χ in the matter power spectrum to make it explicit that the matter
power spectrum at the redshift corresponding to χ should be used there. From the definition of
angular power spectrum (equation 4.19), I finally obtain cosmic shear power spectrum

Cκκ` =

∫ χs

0
dχ
W 2(χ)

f2
K(χ)

Pm

(
`

fK(χ)
;χ

)
, (4.41)

where the weight function W (χ) has been defined in equation (3.28). While equation (4.41) is
sufficiently accurate and is used for cosmological analysis, it should be kept in mind that it is built
on various approximations such as Born approximation, locally flat sky approximation, and Limber
approximation. For instance, it has been shown that the following slightly modified version

Cκκ` =

∫ χs

0
dχ
W 2(χ)

f2
K(χ)

Pm

(
`+ 1/2

fK(χ)
;χ

)
, (4.42)

better reproduces the full calculation result at low ` (Loverde & Afshordi, 2008).
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4.5 Shot noise

In practice the power spectrum has to be estimated from a discrete galaxy sample, which has an
impact of the measurement of the power spectrum. As discussed in Section 3.2, shapes of galaxies
provide noisy measurements of weak gravitational lensing shear. Given equation (3.22), for each
galaxy labeled by i located at θi, I define an estimator of shear as

γobs
i :=

εi
2
≈ ε

(s)
i

2
+ γ(θi), (4.43)

where εi and ε
(s)
i denote observed and intrinsic ellipticities of the galaxy, respectively. From a discrete

galaxy sample, I construct observed shear field using a cell model (see e.g., Mo et al., 2010). I divide
the survey region into small cells with areas of ∆Ω. Each cell is sufficient small such that it contains
at most one galaxy. The estimator of the shear field is written as

γobs(θ) :=
1

n̄

∑
i

Niγ
obs
i δD(θ − θi), (4.44)

where n̄ is (projected) angular number density of galaxies, Ni = 0 or 1 is an occupation number at
i-th cell, and the summation runs over the cells. From 〈Niγ

obs
i 〉 = 〈Ni〉〈γobs

i 〉 = n̄∆Ω〈γobs
i 〉, from

which one can show 〈γobs(θ)〉 = 〈γ(θ)〉. Using equation (4.2), its Fourier transform is computed as

γ̃obs(`) =
1

n̄

∑
i

Niγ
obs
i e−i`·θi . (4.45)

Equation (4.12) suggests that the correlation E-mode shear γ̃obs
E (`) (see equation 4.3) is computed

as

〈γ̃obs
E (`)γ̃obs

E (`′)〉 =
1

n̄2

∑
i,j

〈NiNjγ
obs
E,i γ

obs
E,j 〉e−i(`·θi+`

′·θj). (4.46)

and

〈NiNjγ
obs
E,i γ

obs
E,j 〉 =

〈
NiNj

ε
(s)
E,i

2

ε
(s)
E,j

2

〉
+ 〈NiNjγE(θi)γE(θj)〉

= n̄∆Ωδij
σ2
ε/2

2
+ (n̄∆Ω)2 〈γE(θi)γE(θj)〉, (4.47)

where σε/2(≈ 0.4) is the root-mean-square of intrinsic ellipticities and a factor 1/2 originates from
the fact that random intrinsic ellipticities contribute to both E-mode and B-mode equally (i.e.,
σ2
εE/2

= σ2
εB/2

= σ2
ε/2/2). From this expression, equation (4.46) reduces to

〈γ̃obs
E (`)γ̃obs

E (`′)〉 =
1

n̄

∑
i

∆Ω
σ2
ε/2

2
e−i(`+`

′)·θi +
∑
i,j

(∆Ω)2 〈γE(θi)γE(θj)〉e−i(`·θi+`
′·θj)

≈
σ2
ε/2

2n̄

∫
dθie

−i(`+`′)·θi +

∫
dθi

∫
dθ′j ω

γEγE(θ′j) e
−i(`+`′)·θi−i`′·θ′j

= (2π)2δD(`+ `′)

(
σ2
ε/2

2n̄
+ CγEγE`

)
(4.48)
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Therefore, an observed cosmic shear power spectrum CγEγE,obs
` from a discrete galaxy sample be-

comes

CγEγE,obs
` = CγEγE` +

σ2
ε/2

2n̄
. (4.49)

The second term that is inversely proportional to the angular number density of galaxies is called
the shot noise. Although the shot noise term can be estimated from the observation and therefore
one can obtain CγEγE` from the observed data, it is still very important as it contributes to the noise
as I will see below.

4.6 Covariance

Since the measurement error of power spectrum depends on the survey area, Fourier transform
should also be performed in a limited sky area. Let’s assume that the survey region is a rectangular
with the length Θ. Adopting the size of a cell in ` space as ∆` = 2π/Θ (i.e., ∆Ω = (2π/Θ)2),
equation (4.1) is modified as

κ(θ) =
∑
i

(∆`)2

(2π)2
κ̃(`i)e

i`i·θ =
1

Ωs

∑
i

κ̃(`i)e
i`i·θ, (4.50)

where Ωs = Θ2 is the total survey area. Using this discretized description in ` space, E-mode power
spectrum in i-th ` bin defined by `i,min < ` < `i,max is estimated as

ĈγEγE,obs
`,i :=

1

ΩsNmode,i

∑
`∈i

γ̃obs
E (`)γ̃obs

E (−`), (4.51)

where

Nmode,i :=
π
(
`2i,max − `2i,min

)
∆`2

= fsky

(
`2i,max − `2i,min

)
, (4.52)

is the number of modes in the bin and fsky := Ωs/(4π). Using a discrete version of the definition of
power spectrum

〈γ̃obs
E (`i)γ̃

obs
E (`j)〉 = Ωsδ`i+`jC

γEγE,obs
`,i , (4.53)

with δ`i+`j = 1 only when `i + `j = 0, it is shown that 〈ĈγEγE,obs
`,i 〉 = CγEγE,obs

`,i .
I now derive covariance between i-th and j-th ` bins. It is defined by[

Cov(ĈγEγE` )
]
ij

:=
〈
ĈγEγE,obs
`,i ĈγEγE,obs

`,j

〉
−
〈
ĈγEγE,obs
`,i

〉〈
ĈγEγE,obs
`,j

〉
=

1

Ω2
sNmode,iNmode,j

∑
`∈i

∑
`′∈j

〈
γ̃obs

E (`)γ̃obs
E (−`)γ̃obs

E (`′)γ̃obs
E (−`′)

〉
−CγEγE,obs

`,i CγEγE,obs
`,j . (4.54)

The accurate evaluation of this covariance requires knowledge of trispectrum of convergence and
hence is challenging. Here I make a simplified assumption that convergence obeys random Gaussian
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statistics for which the connected trispectrum is zero. In this case,〈
γ̃obs

E (`)γ̃obs
E (−`)γ̃obs

E (`′)γ̃obs
E (−`′)

〉
=

〈
γ̃obs

E (`)γ̃obs
E (−`)

〉〈
γ̃obs

E (`′)γ̃obs
E (−`′)

〉
+
〈
γ̃obs

E (`)γ̃obs
E (`′)

〉〈
γ̃obs

E (−`)γ̃obs
E (−`′)

〉
+
〈
γ̃obs

E (`)γ̃obs
E (−`′)

〉〈
γ̃obs

E (`′)γ̃obs
E (−`)

〉
,

(4.55)

and as a result covariance is simplified as

[
Cov(ĈγEγE` )

]
ij

=
2δij

Nmode,i

(
CγEγE,obs`,i

)2
=

2δij
Nmode,i

(
CγEγE`,i +

σ2
ε/2

2n̄

)2

. (4.56)

Although this expression of covariance ignores non-Gaussian effects and therefore is not accurate in
general (see e.g., Takada & Jain, 2009; Takada & Hu, 2013, for effects of non-Gaussianity), it has
several important implications. First, covariance is inversely proportional to Nmode,i, which is an
increasing function of ` for a fixed `-bin width. Hence measurements of power spectrum at low ` is
noisy, due to a large cosmic variance. Second, it is also inversely proportional to the survey area Ωs,
which suggests that the signal-to-noise ratio of cosmic shear measurements is ∝ √Ωs. Third, the
shot noise contributes to covariance, which tends to dominate at large `. Fourth, covariance matrix
is diagonal, which makes various calculations simpler.

5 Cosmology with cosmic shear

5.1 Behavior of power spectrum

In previous Section, I derived cosmic shear power spectrum (equation 4.41), which is essentially
given by the integration of the matter power spectrum along the line-of-sight. On the other hand,
from a large sample of distant galaxies with measurements of their ellipticities, one can in principle
infer the E-mode shear power spectrum (equation 4.51). Therefore cosmological parameters can
be constrained by searching for parameters that best reproduce the observed cosmic shear power
spectrum. In order to understand what kind of constraints will be obtained, however, it is important
to know behavior of cosmic shear power spectrum, including its sensitivity to various parameters.

Figure 6 shows an example of theoretical calculations of cosmic shear power spectrum in the
current standard cosmological model. Since the standard cold dark model predicts large density
fluctuations at small scales, cosmic shear also has a large power at large `. The comparison with
power spectrum computed from the linear matter power spectrum indicates that the nonlinear
evolution of density fluctuations is indeed important for cosmic shear. At very large `, measurements
become very noisy due to large shot noise. Together with the fact that cosmic variance is large at
small ` (see equation 4.56), for a typical case with n̄ = 20 arcmin−2 it is expected that constraints
on cosmological parameters mainly come from ` ∼ 103.

It is worth noting that the power spectrum is relatively featureless. This is because any features in
matter power spectrum, most notably baryon acoustic oscillations, are smeared out due to projection
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Figure 6: Left: The solid line shows cosmic shear power spectrum (equation 4.41) for the source
redshift zs = 1 and assuming Planck 2018 best-fitting cosmological parameters (Planck Collaboration
et al., 2018). The nonlinear matter power spectrum is computed using a revised halofit model
(Takahashi et al., 2012). The dotted line shows cosmic shear power spectrum computed using the
linear matter power spectrum. Dashed lines show the shot noise (second term of equation 4.49) with
σε/2 = 0.4 and three different source galaxy number densities n̄. Right: Logarithmic derivatives of
cosmic shear power spectrum for three important parameters, source redshift zs (solid), matter
density Ωm0 (dotted), and the normalization of density fluctuations σ8 (dashed), around the fiducial
model shown in the left panel. When changing Ωm0, ΩΛ0 is also changed assuming the flat Universe.

that mixes different k-modes. Hence the main constraining power of cosmic shear power spectrum
comes from its amplitude.

Figure 6 shows logarithmic derivatives of cosmic shear power spectrum. From this Figure, at
` = 1000 it is found

Cκκ`=1000 ∝ z1.5
s Ω1.5

m0σ
2.9
8 , (5.1)

around the fiducial model. This well explains the fact that cosmic shear constraints look a ‘banana’
shape in the Ωm0-σ8 plane. It is also found that to constrain S8 := σ8(Ωm0/0.3)α (α ≈ 0.5) accurately,
say 5%, the average source redshift needs to be known at better than 10% accuracy. Since it is
impractical to obtain spectroscopic redshifts for all the source galaxies used for weak gravitational
lensing measurements, photometric redshifts are usually employed for estimating the average source
redshift, and one challenge for cosmic shear cosmology is to obtain accurate photometric redshifts
for such faint galaxies.

5.2 Cosmic shear tomography

Since weak gravitational lensing probes all the matter fluctuations along the line-of-sight, one cannot
measure redshift evolution of density fluctuations from the analysis of a single galaxy sample. One
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popular way to measure the redshift evolution is to split the galaxy sample into subsamples with
different redshifts (Hu, 1999). Given the difference of the weight function for different source redshifts
(see Figure 4), the redshift evolution is constrained to some extent. Since the weight function is
broad, galaxies in different redshift bins usually have significant cross power spectrum.

5.3 Challenges

Just like other cosmological probes, there are many possible sources of systematic errors in cosmic
shear analysis. These systematic errors must be kept under control in order to obtain accurate
constraints. I do not go into detail here, but to guide future studies along this line I just list several
topics that are worth investigating carefully.

• Shape measurements, in particular effects of blended (overlapping) galaxies.

• Photometric redshift accuracies, including accurate estimates of outliers, possibilities of clip-
ping to remove galaxies with bad photometric redshifts.

• Improving theoretical predictions, in particular accurate estimates of impact of baryon physics
(star formation, feedback, etc) on matter power spectrum.

• Intrinsic alignments of galaxies, their accurate modeling and how to mitigate their effects on
cosmic shear.

• Measurement methods, such as two-point correlation functions versus power spectrum, their
complementary, etc. Analysis in curved sky.

• Limitations of various approximations, such as locally flat sky, Limber, and Born approxima-
tions (may be important in future surveys).

• Accurate and fast calculation of covariance, including effects of super-survey modes.

• Model predictions in different cosmological models, such as modified gravity theories.

A Calculations in conformal Newtonian gauge

A.1 Metric

I summarize various calculations for the following spacetime metric

ds2 = gµνdx
µdxν := −

(
1 +

2Φ

c2

)
c2dt2 + a2

(
1− 2Ψ

c2

)
γijdx

idxj (µ, ν = 0, 1, 2, 3), (A.1)

where
γijdx

idxj := dχ2 + f2
K(χ)

(
dθ2 + sin2 θdφ2

)
(i, j = 1, 2, 3), (A.2)

and fK(χ) is defined by equation (1.2). The covariant metric is defined such that it satisfies gµαgαν =
δµν , where δµν denotes the Kronecker delta. Below all the calculations will be done up to the
first order in Φ and Ψ. I use the Einstein summation convention, and also comma derivative i.e.,
f,µ := ∂f/∂xµ.
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A.2 Christoffel symbols

Christoffel symbols are defined by

Γαµν :=
1

2
gαβ (gνβ,µ + gµβ,ν − gµν,β) . (A.3)

Their explicit expressions for the metric (A.1) are

Γ0
00 =

Φ̇

c3
, Γ0

0i = Γ0
i0 =

Φ,i

c2
, Γ0

ij =
a2

c
γij

[
H

(
1− 2Φ

c2
− 2Ψ

c2

)
− Ψ̇

c2

]
, (A.4)

Γi00 =
γil

a2

Φ,l

c2
, Γi0j = Γij0 =

δij
c

(
H − Ψ̇

c2

)
, (A.5)

Γijk = (3)Γijk +
1

c2

(
γjkγ

ilΨ,l − δijΨ,k − δikΨ,j

)
, (A.6)

where (3)Γijk denote Christoffel symbols computed from γij defined by equation (A.2)

(3)Γijk :=
1

2
γil (γkl,j + γjl,k − γjk,l) . (A.7)

A.3 Ricci curvature

The Ricci curvature tensor is defined by

Rµν := Γανµ,α − Γααµ,ν + ΓααβΓβνµ − ΓανβΓβαµ. (A.8)

Explicit expressions for the metric (A.1) are

R00 = − 3ä

c2a
+

3Ψ̈

c4
+

3HΦ̇

c4
+

6HΨ̇

c4
+

(3)∆Φ

c2a2
, (A.9)

R0i =
2Ψ̇,i

c3
+

2HΦ,i

c3
, (A.10)

Rij = (3)Rij −
Φ|ij

c2
+

Ψ|ij

c2

+

[(
2a2H2

c2
+
aä

c2

)(
1− 2Φ

c2
− 2Ψ

c2

)
− a2Ψ̈

c4
− a2HΦ̇

c4
− 6

a2HΨ̇

c4
+

(3)∆Ψ

c2

]
γij ,(A.11)

where (3)Rij is the Ricci curvature tensor computed from γij . For γij defined by equation (A.2),
(3)Rij is given by

(3)Rij = 2Kγij . (A.12)
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In the expressions of the Ricci curvature tensor above I also used the three-dimensional Laplace
operator defined by

(3)∆f :=
1√
|γ|

∂

∂xj

(√
|γ|γij ∂f

∂xi

)
= γijf,ij + γij ,jf,i + (3)Γkkjγ

ijf,i, (A.13)

(3)Γkkj =
1√
|γ|

∂

∂xj

√
|γ|, (A.14)

where γ denotes the determinant of γij . Also the vertical bar represents the covariant derivative
with respect to γij i.e.,

f|ij := f,ij − (3)Γlijf,l. (A.15)

With this notation the Laplace operator is described as (3)∆f = γijf|ij = f |i|i.

A.4 Scalar curvature

By contracting the Ricci tensor I obtain the scalar curvature

R := gµνRµν

=
6

c2

(
H2 +

ä

a
+
c2K

a2

)
− 12

c2

(
H2 +

ä

a

)
Φ

c2
+

12ΨK

c2a2

−6Ψ̈

c4
− 6HΦ̇

c4
− 24HΨ̇

c4
− 2(3)∆Φ

c2a2
+

4(3)∆Ψ

c2a2
. (A.16)

A.5 Einstein tensor

The Einstein tensor is defined by

Gµν := gµαRαν −
1

2
δµνR. (A.17)

Their explicit expressions are

G0
0 = − 3

c2

(
H2 +

c2K

a2

)
+

6H2Φ

c4
− 6ΨK

c2a2
+

6HΨ̇

c4
− 2(3)∆Ψ

c2a2
, (A.18)

G0
i = −2Ψ̇,i

c3
− 2HΦ,i

c3
, (A.19)

Gij =

[
− 1

c2

(
H2 + 2

ä

a
+
c2K

a2

)
+

2

c2

(
H2 + 2

ä

a

)
Φ

c2
− 2ΨK

c2a2

+
2Ψ̈

c4
+

2HΦ̇

c4
+

6HΨ̇

c4
+

(3)∆Φ

c2a2
−

(3)∆Ψ

c2a2

]
δij −

1

c2a2

(
Φ|i|j −Ψ|i|j

)
. (A.20)
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A.6 Einstein equation

The perturbed stress-energy tensor is given by

T 0
0 = −

∑
α

(ρα + δρα), (A.21)

T 0
i =

∑
α

(ρα + pα)
avαi
c
, (A.22)

T ij =
∑
α

(pα + δpα)δij + σα
i
j , (A.23)

where ρα and pα are background quantities and δρα, vαi, δpα, and σα
i
j are perturbations. σα

i
j is

an anisotropic stress tensor that is defined to be traceless i.e.,

σα
i
i = 0. (A.24)

It is straightforward to see that the zero-th order Einstein equation recovers equation (1.4) and
(1.5). On the other hand the first order equations are given by

−3H2Φ

c2
+

3ΨK

a2
− 3HΨ̇

c2
+

(3)∆Ψ

a2
=

4πG

c2

∑
α

δρα, (A.25)

−Ψ̇,i −HΦ,i =
4πG

c2

∑
α

(ρα + pα)avαi, (A.26)

[(
H2 + 2

ä

a

)
Φ

c2
− ΨK

2a2
+

Ψ̈

c2
+
HΦ̇

c2
+

3HΨ̇

c2
+

(3)∆Φ− (3)∆Ψ

3a2

]
=

4πG

c2

∑
α

δpα, (A.27)

1

3c2a2

(
(3)∆Φ− (3)∆Ψ

)
δij −

1

c2a2

(
Φ|i|j −Ψ|i|j

)
=

8πG

c4

∑
α

σα
i
j , (A.28)

where trace and traceless parts of the (ij) component of the Einstein equation are separated.

A.7 Sub-horizon limit

Equations (A.25)–(A.28) can be used to derive evolution of fluctuations at various scales. In this
lecture, however, I mostly focus on fluctuations at the sub-horizon scale in the late Universe, where
∂/∂x � aH/c, the dominant component of fluctuations is matter (α = m), and there is no source
of anisotropic stress (σα

i
j = 0). In addition at the small scale the effect of curvature can be ignored

i.e., (3)∆� K. In this case, the evolution equations are simplified as

(3)∆Φ =
4πGa2

c2
δρm, (A.29)

−Φ̇,i −HΦ,i =
4πG

c2
ρmavmi, (A.30)



A CALCULATIONS IN CONFORMAL NEWTONIAN GAUGE 28

Φ̈ + 4HΦ̇ +

(
H2 + 2

ä

a

)
Φ = 0, (A.31)

Φ−Ψ = 0, (A.32)

where I replaced Ψ to Φ given equation (A.32). I now define the density perturbation

δm :=
δρm

ρm
. (A.33)

Equation (A.29) is rewritten as

(3)∆Φ =
4πGa2ρm

c2
δm, (A.34)

which is called the Poisson equation. By taking the divergence of equation (A.30) and combine it
with equation (A.29) and ρm ∝ a−3, it is straightforward to show

(3)∇ · v = vmi
,i = −aδ̇m. (A.35)

From equations (A.30) and (A.31) it is also shown(
∂

∂t
+H

)
vmi

,i = −
(3)∆Φ

a
. (A.36)

Combining equations (A.35) and (A.36), the evolution equation for the density perturbation is
obtained as

δ̈m + 2Hδ̇m −
4πGρm

c2
δm = 0. (A.37)

This is an important equation that governs the growth of structure in the late Universe. It has the
following two solutions

growing mode : D+ ∝ H
∫ a

0

da

a3H3
, (A.38)

decaying mode : D− ∝ H. (A.39)

In cosmological analyses only the growing mode is important. For the simplest Einstein–de Sitter
Universe (Ωm0 = 1, ΩΛ0 = 0), from equation (1.14) it is easily found D+(a) ∝ a i.e., structure grows
linearly with the scale factor. In the current standard cosmology with a signification contribution of
cosmological constant, however, the friction term 2Hδ̇m is larger and hence the growth of structure
becomes slower than a. Figure 7 clearly shows that the growth becomes slower than a in the late
Universe when cosmological constant contributes to the expansion rate of the Universe, and when
ΩΛ0 is larger the suppression of the growth is stronger.
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Figure 7: Linear growth rate D+ (equation A.38) as a function of scale factor a for three different
cosmological parameter sets. Here the normalization is determined so as to satisfy D+(a)/a ≈ 1
at a � 1. The dotted line shows D+ ∝ a, which is the solution in the Einstein–de Sitter Universe
(Ωm0 = 1, ΩΛ0 = 0).

A.8 Decomposition into radial and angular parts

For calculating gravitational lensing effects, it is useful to decompose the spatial metric γij into
radial and angular parts. Specifically, I rewrite equation (A.2) as

γijdx
idxj = dχ2 + f2

K(χ)ωabdx
adxb (a, b = 2, 3), (A.40)

ωabdx
adxb := dθ2 + sin2 θdφ2. (A.41)

Explicit expressions for Christoffel symbols (3)Γijk (equation A.7) are

(3)Γ1
11 = (3)Γ1

1a = (3)Γ1
a1 = (3)Γa11 = 0, (3)Γ1

ab = −fK(χ)f ′K(χ)ωab, (A.42)

(3)Γa1b = (3)Γab1 =
f ′K(χ)

fK(χ)
δab,

(3)Γabc = (2)Γabc, (A.43)

where (2)Γabc are Christoffel symbols computed from ωab

(2)Γabc :=
1

2
ωad (ωcd,b + ωbd,c − ωbc,d) . (A.44)
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