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Weak lensing distortions
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Figure 3: Distortions of galaxy shapes by gravitational lensing. Dotted circles show the original
shape of a source, which is assumed to be circular symmetric. Solid lines show shapes after the
gravitational lensing e↵ect.

3.2 Measurements

When the e↵ect of gravitational lensing is very strong, one can detect it directly from highly dis-
torted shapes of galaxies or multiple images of sources. However, in this lecture I focus only on
weak gravitational lensing where signals are weak so that they need to be detected statistically by
combining many sources. Among various techniques to detect weak gravitational lensing, the most
standard technique is to use shapes of source galaxies, which I will explain below.

Here I discuss a simple way to measure galaxy shapes using second moments Q
ab

of their surface
brightness distributions I(✓). For each galaxy, Q

ab

is defined as

Q
ab

:=

R
d✓I(✓)✓

a

✓
bR

d✓I(✓)
, (3.15)

adopting the origin of ✓ to the center of the galaxy. In a manner similar to equation (3.13), I define
complex ellipticity ✏ of a galaxy as

✏ :=
Q

11

� Q
22

+ 2iQ
12

Q
11

+Q
22

. (3.16)

Using the matrix A (equation 3.9), the corresponding second moments in the source plane Q
(s)

ab

is
given by

Q
(s)

ab

:=

R
d�I(�)�

a

�
bR

d�I(�)
⇡ A

ac

A
bd

Q
cd

, (3.17)

where the conservation of the surface brightness distribution due to gravitational lensing (I(s)(�) =
I(✓)) is adopted, and adopting

R
d� =

R
d✓|detA| ⇡ |detA| R d✓ given that the size of each galaxy

is su�ciently small. By a straightforward calculation, it is shown that

✏(s) =
(1 � )2✏ � 2(1 � )� + �2✏⇤

(1 � )2 + |�|2 � 2(1 � )Re(�✏⇤)
. (3.18)

convergence κ
not easy to measure

shear 𝜸
measured from galaxy shapes 



Convergence and shear
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Since there is no way to infer the source position � for a distant object at ✓, one cannot directly
detect gravitational lensing e↵ects for distant objects from their positions on the sky. However,
as I will show below, gravitational lensing also distorts shapes of distant objects, from which one
can detect gravitational lensing e↵ects in a statistical sense. Such distortions can be derived from
equation (3.5), by considering the following Jacobi matrix

A :=
@�

@✓
= I � @↵

@✓
, (3.8)

where I denotes a 2⇥2 identity matrix. Note that A describes a mapping from an image to a source
(rather than a source to an image) i.e., a shape of an image with the shape �✓ is mapped into a
source with the shape �� = A�✓. The matrix A can be decomposed into trace and traceless part as

A =

✓
1 � � �

1

��
2

��
2

1 � + �
1

◆
, (3.9)

where  and �
i

are convergence and shear defined as

 :=
1

2
( 

,✓1✓1 +  
,✓2✓2) , (3.10)

�
1

:=
1

2
( 

,✓1✓1 �  
,✓2✓2) , (3.11)

�
2

:=  
,✓1✓2 . (3.12)

Figure 3 shows how a shape of source is distorted due to , �
1

, and �
2

. Sometimes �
1

and �
2

are
combined into complex shear

� := �
1

+ i�
2

, (3.13)

which will be useful for various calculations as shown below.
A caveat is that � depends on the choice of coordinates (✓

1

, ✓
2

), which is obvious also from
Figure 3. Suppose the coordinate system is rotated by an angle ↵ i.e., ✓0 = e�↵✓ in the complex
plane expression,  and � are transformed as

0 = , �0 = e�2i↵�, (3.14)

which indicates that � is a spin-2 field (i.e., � is not a vector).
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from lens potential + Poisson equation

Connection w/ density fluctuation
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Figure 4: Left: The comoving radial distance � as a function of redshift (equation 1.13). Right:

The weight function W (�) defined by equation (3.28) for several di↵erent source redshifts z
s

. Here
and in what follows Planck 2018 best-fitting cosmological parameters (Planck Collaboration et al.,
2018) are adopted.

where the approximation is based on the fact that the term proportional to � itself, which appears
after the integration by parts, is quite small given O(10�5). Using ⌦

m0
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Once convergence  is obtained from a given density field �, the lens potential  from equation (3.10)
using Green’s function

 (✓) = 2

Z
d✓0G(✓,✓0)(✓0) =

1

⇡

Z
d✓0 ln

��
✓ � ✓

0��(✓0), (3.26)

where locally flat sky is assumed obviously and G(x,x0) = (1/2⇡) ln |x � x

0| is Green’s function for
two-dimensional Laplace operator. Therefore, from a given density fluctuations, one can derive the
lens potential  from equation (3.26), and then derive shear from equations (3.11) and (3.12).

Equations (3.24) and (3.25) indicate that  is derived by integrating density fluctuations along
the line-of-sight with a weight

(✓) =

Z
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m

(�,✓), (3.27)
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In Figure 4 we show W (�) for several di↵erent source redshifts, along with the relation between �(z)
and z. It is found that gravitational lensing mainly probes matter fluctuations at the half way to the

   convergence 
= projected surface density

weight along line-of-sight
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E/B decomposition
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Figure 3: Distortions of galaxy shapes by gravitational lensing. Dotted circles show the original
shape of a source, which is assumed to be circular symmetric. Solid lines show shapes after the
gravitational lensing e↵ect.

3.2 Measurements

When the e↵ect of gravitational lensing is very strong, one can detect it directly from highly dis-
torted shapes of galaxies or multiple images of sources. However, in this lecture I focus only on
weak gravitational lensing where signals are weak so that they need to be detected statistically by
combining many sources. Among various techniques to detect weak gravitational lensing, the most
standard technique is to use shapes of source galaxies, which I will explain below.

Here I discuss a simple way to measure galaxy shapes using second moments Q
ab

of their surface
brightness distributions I(✓). For each galaxy, Q
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is defined as

Q
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:=
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adopting the origin of ✓ to the center of the galaxy. In a manner similar to equation (3.13), I define
complex ellipticity ✏ of a galaxy as
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Using the matrix A (equation 3.9), the corresponding second moments in the source plane Q
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is
given by
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where the conservation of the surface brightness distribution due to gravitational lensing (I(s)(�) =
I(✓)) is adopted, and adopting

R
d� =

R
d✓|detA| ⇡ |detA| R d✓ given that the size of each galaxy

is su�ciently small. By a straightforward calculation, it is shown that

✏(s) =
(1 � )2✏ � 2(1 � )� + �2✏⇤

(1 � )2 + |�|2 � 2(1 � )Re(�✏⇤)
. (3.18)
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Figure 5: Meaning of E-mode and B-mode shear (see equation 4.9). E-mode shear �
E

(✓) is essentially
summation of tangential shear �

+

(✓0; ✓) (equation 4.10) around ✓, and B-mode shear �
E

(✓) is
summation of cross shear �⇥(✓

0; ✓) (equation 4.11) around ✓.

with �✓ being a polar angle in real space i.e., (✓
1

, ✓
2

)=(|✓| cos�✓, |✓| sin�✓). Inserting this expression
to equation (4.6), I obtain
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(✓) + i�
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(✓) =
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0; ✓)
��
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0��2 + i
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where

�
+

(✓0; ✓) := �Re
h
�(✓0) e�2i�✓0�✓

i
= ��

1

(✓0) cos(2�✓0�✓) � �
2

(✓0) sin(2�✓0�✓), (4.10)

�⇥(✓
0; ✓) := �Im

h
�(✓0) e�2i�✓0�✓

i
= �

1

(✓0) sin(2�✓0�✓) � �
2

(✓0) cos(2�✓0�✓). (4.11)

From the definition of shear, it is easily found that �
+

(✓0; ✓) and �⇥(✓
0; ✓) represents tangential

shear and its 45� rotated version (sometimes referred to as cross shear) around ✓, respectively. Thus
in analogy to electromagnetics, �

E

and �
B

is E-mode and B-mode shear, respectively. Figure 5 gives
an explanation of E-mode and B-mode shear.
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4 Cosmic shear power spectrum

4.1 Fourier transform and E/B decomposition

One of the most popular ways to extract cosmological weak gravitational lensing signals is to mea-
sure two-point correlation functions, or their counterparts in Fourier space, power spectra. Since
calculations are more convenient in Fourier space, here I introduce convergence and shear in Fourier
space and discuss their properties.

I again adopt locally flat coordinates, and use the following convention to perform Fourier trans-
form

(✓) =

Z
d`

(2⇡)2
̃(`)ei`·✓, (4.1)

̃(`) =

Z
d✓ (✓)e�i`·✓. (4.2)

Similarly I denote Fourier transform of complex shear as �̃.
As shown in equation (3.14) shear is not invariant under coordinate rotation. This coordinate

rotation also changes �̃ as �̃0 = e�2i↵�̃. From �̃, I define new fields �̃
E

and �̃
B

that are designed to
be invariant under coordinate rotation

�̃
E

:= cos (2�`) �̃1 + sin (2�`) �̃2, (4.3)

�̃
B

:= � sin (2�`) �̃1 + cos (2�`) �̃2, (4.4)

where �` is a polar angle in Fourier space i.e., (`
1

, `
2

)=(|`| cos�`, |`| sin�`). They satisfy

�̃
E

+ i�̃
B

= e�2i�` �̃. (4.5)

Under coordinated rotation with angle ↵, �̃ ! e�2i↵�̃ and �` ! �` � ↵, and hence the right hand
side of equation (4.5) does not change.

The physical meaning of �̃
E

and �̃
B

becomes clearer once they are transformed to real space.
From equation (4.5), I can obtain their expressions in real space as

�
E

(✓) + i�
B

(✓) =

Z
d`

(2⇡)2
ei`·✓

Z
d✓0 �(✓0)e�i`·✓0

Z
d✓00D(✓00)e�i`·✓00

=

Z
d✓0�(✓0)D(✓ � ✓

0), (4.6)

where I used a useful formula for Dirac delta function �D(✓)
Z

d`

(2⇡)2
ei`·✓ = �D(✓), (4.7)

and D(✓) is Fourier transform of e�2i�` and is given by

D(✓) = � 1

⇡

e�2i�✓

|✓|2 = � 1

⇡

✓2
1

� ✓2
2

� 2i✓
1

✓
2

|✓|4 , (4.8)

𝜸1, 𝜸2

local 
coordinate-dependent

𝜸E, 𝜸B

non-local 
coordinate-independent
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Figure 3: Distortions of galaxy shapes by gravitational lensing. Dotted circles show the original
shape of a source, which is assumed to be circular symmetric. Solid lines show shapes after the
gravitational lensing e↵ect.

3.2 Measurements

When the e↵ect of gravitational lensing is very strong, one can detect it directly from highly dis-
torted shapes of galaxies or multiple images of sources. However, in this lecture I focus only on
weak gravitational lensing where signals are weak so that they need to be detected statistically by
combining many sources. Among various techniques to detect weak gravitational lensing, the most
standard technique is to use shapes of source galaxies, which I will explain below.

Here I discuss a simple way to measure galaxy shapes using second moments Q
ab

of their surface
brightness distributions I(✓). For each galaxy, Q

ab

is defined as

Q
ab

:=

R
d✓I(✓)✓

a

✓
bR

d✓I(✓)
, (3.15)

adopting the origin of ✓ to the center of the galaxy. In a manner similar to equation (3.13), I define
complex ellipticity ✏ of a galaxy as

✏ :=
Q

11

� Q
22

+ 2iQ
12

Q
11

+Q
22

. (3.16)

Using the matrix A (equation 3.9), the corresponding second moments in the source plane Q
(s)

ab

is
given by

Q
(s)

ab

:=

R
d�I(�)�

a

�
bR

d�I(�)
⇡ A

ac

A
bd

Q
cd

, (3.17)

where the conservation of the surface brightness distribution due to gravitational lensing (I(s)(�) =
I(✓)) is adopted, and adopting

R
d� =

R
d✓|detA| ⇡ |detA| R d✓ given that the size of each galaxy

is su�ciently small. By a straightforward calculation, it is shown that

✏(s) =
(1 � )2✏ � 2(1 � )� + �2✏⇤

(1 � )2 + |�|2 � 2(1 � )Re(�✏⇤)
. (3.18)
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Figure 5: Meaning of E-mode and B-mode shear (see equation 4.9). E-mode shear �
E

(✓) is essentially
summation of tangential shear �

+

(✓0; ✓) (equation 4.10) around ✓, and B-mode shear �
E

(✓) is
summation of cross shear �⇥(✓

0; ✓) (equation 4.11) around ✓.

with �✓ being a polar angle in real space i.e., (✓
1

, ✓
2

)=(|✓| cos�✓, |✓| sin�✓). Inserting this expression
to equation (4.6), I obtain

�
E

(✓) + i�
B

(✓) =
1

⇡

Z
d✓0 �+(✓

0; ✓)
��
✓ � ✓

0��2 + i
1

⇡

Z
d✓0 �⇥(✓

0; ✓)
��
✓ � ✓

0��2 , (4.9)

where

�
+

(✓0; ✓) := �Re
h
�(✓0) e�2i�✓0�✓

i
= ��

1

(✓0) cos(2�✓0�✓) � �
2

(✓0) sin(2�✓0�✓), (4.10)

�⇥(✓
0; ✓) := �Im

h
�(✓0) e�2i�✓0�✓

i
= �

1

(✓0) sin(2�✓0�✓) � �
2

(✓0) cos(2�✓0�✓). (4.11)

From the definition of shear, it is easily found that �
+

(✓0; ✓) and �⇥(✓
0; ✓) represents tangential

shear and its 45� rotated version (sometimes referred to as cross shear) around ✓, respectively. Thus
in analogy to electromagnetics, �

E

and �
B

is E-mode and B-mode shear, respectively. Figure 5 gives
an explanation of E-mode and B-mode shear.
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4 Cosmic shear power spectrum

4.1 Fourier transform and E/B decomposition

One of the most popular ways to extract cosmological weak gravitational lensing signals is to mea-
sure two-point correlation functions, or their counterparts in Fourier space, power spectra. Since
calculations are more convenient in Fourier space, here I introduce convergence and shear in Fourier
space and discuss their properties.

I again adopt locally flat coordinates, and use the following convention to perform Fourier trans-
form

(✓) =

Z
d`

(2⇡)2
̃(`)ei`·✓, (4.1)

̃(`) =

Z
d✓ (✓)e�i`·✓. (4.2)

Similarly I denote Fourier transform of complex shear as �̃.
As shown in equation (3.14) shear is not invariant under coordinate rotation. This coordinate

rotation also changes �̃ as �̃0 = e�2i↵�̃. From �̃, I define new fields �̃
E

and �̃
B

that are designed to
be invariant under coordinate rotation

�̃
E

:= cos (2�`) �̃1 + sin (2�`) �̃2, (4.3)

�̃
B

:= � sin (2�`) �̃1 + cos (2�`) �̃2, (4.4)

where �` is a polar angle in Fourier space i.e., (`
1

, `
2

)=(|`| cos�`, |`| sin�`). They satisfy

�̃
E

+ i�̃
B

= e�2i�` �̃. (4.5)

Under coordinated rotation with angle ↵, �̃ ! e�2i↵�̃ and �` ! �` � ↵, and hence the right hand
side of equation (4.5) does not change.

The physical meaning of �̃
E

and �̃
B

becomes clearer once they are transformed to real space.
From equation (4.5), I can obtain their expressions in real space as

�
E

(✓) + i�
B

(✓) =

Z
d`

(2⇡)2
ei`·✓

Z
d✓0 �(✓0)e�i`·✓0

Z
d✓00D(✓00)e�i`·✓00

=

Z
d✓0�(✓0)D(✓ � ✓

0), (4.6)

where I used a useful formula for Dirac delta function �D(✓)
Z

d`

(2⇡)2
ei`·✓ = �D(✓), (4.7)

and D(✓) is Fourier transform of e�2i�` and is given by

D(✓) = � 1

⇡

e�2i�✓

|✓|2 = � 1

⇡

✓2
1

� ✓2
2

� 2i✓
1

✓
2

|✓|4 , (4.8)

𝜸1, 𝜸2

local 
coordinate-dependent

𝜸E, 𝜸B

non-local 
coordinate-independent

𝜸E=κ 𝜸B=0
(Born approximation)



• angular power spectrum in Fourier space

Defining power spectrum
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Now let’s see the relation of �
E

and �
B

with convergence. From equations (3.10)–(3.12) in Fourier
space convergence is related with shear as

̃ = e�2i�` �̃. (4.12)

This indicates
�
E

= , �
B

= 0, (4.13)

i.e., gravitational lensing produces only E-mode shear. Note that equation (4.13) is exactly true
only under Born approximation. Higher order e↵ects produce small B-mode, which is ⇠ 3 orders
of magnitude smaller than E-mode and hence can be ignored in most cases (e.g., Krause & Hirata,
2010).

4.2 Definition of power spectrum

The power spectrum, which is Fourier transform of two-point correlation function, plays a central
role in cosmology. For instance, in the three-dimensional space the two-point correlation function
of density fluctuations is usually defined as

⇠
m

(r) := h�
m

(r0)�
m

(r0 + r)i, (4.14)

where r = |r| is the separation and h. . .i denotes ensemble average. From this, the correlation of
density fluctuations in Fourier space is computed as

h�̃(k)�̃(k0)i =
Z

dr0 e�ik·r0
Z

dr00 e�ik0·r00h�
m

(r0)�
m

(r00)i = (2⇡)3�D(k + k

0)

Z
dr e�ik·r⇠

m

(r),

(4.15)
where I used Z

dr

(2⇡)3
eik·r = �D(k). (4.16)

The matter power spectrum P
m

(k) as a function of wavenumber k := |k| is defined by

h�̃(k)�̃(k0)i := (2⇡)3�D(k + k

0)P
m

(k), (4.17)

which satisfies

P
m

(k) =

Z
dr e�ik·r⇠

m

(r) = 4⇡

Z
r2dr

sin(kr)

kr
⇠
m

(r), (4.18)

indicating that the power spectrum is given by Fourier transform of two-point correlation function
(known as the Wiener–Khinchin theorem). The two-point correlation function and the power spec-
trum depends only on norms of r and k, respectively, because the Universe is on average isotropic.

Power spectra of convergence and shear can be defined in a similar fashion. Specifically, I define
angular power spectra C

`

as a function of ` := |`| as

h̃(`)̃(`0)i := (2⇡)2�D(`+ `

0)C

`

, (4.19)

and

C

`

=

Z
d✓ e�i✓·`!(✓) = 2⇡

Z
✓d✓ J

0

(`✓)!(✓), (4.20)
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where !(✓) is angular two-point correlation function as a function of ✓ := |✓| defined by

!(✓) := h(✓0)(✓0 + ✓)i, (4.21)

and J
0

(x) is the zeroth order Bessel function. In deriving the equation above, I used an integral
formula of Bessel function J

n

(x)

J
n

(x) =
1

2⇡in

Z
2⇡

0

ein�+ix cos�d�. (4.22)

In a manner similar to above, I can define power spectrum and correlation functions for various shear
components. A caveat is that �

1

and �
2

are coordinate-dependent, and therefore their correlation
functions and power spectra depend on directions of ✓ and `, respectively. Specifically I write

h�̃
i

(`)�̃
j

(`0)i := (2⇡)2�D(`+ `

0)C
�i�j

` , (4.23)

C
�i�j

` =

Z
d✓ e�i✓·`!�i�j (✓), (4.24)

!�i�j (✓) := h�
i

(✓0)�
i

(✓0 + ✓)i, (4.25)

where �
i

and �
j

are �
1

, �
2

, �
+

, �⇥, �
E

, �
B

, as well as complex representation of shear � (equa-
tion 3.13). From equation (4.13), it is found C

`

= C�E�E
`

and C�B�B
`

= 0 under Born approxima-
tion.

4.3 Connection with two-point correlation function

While there are several di↵erent approaches to study correlations of shear in real space, here I focus
on the following two correlation functions (e.g., Kaiser, 1992)

⇠±(✓) := !�+�+(✓) ± !�⇥�⇥(✓), (4.26)

where !�+�+(✓) and !�⇥�⇥(✓) are defined by

!�+�+(✓) := h�
+

(✓0;✓0 + ✓)�
+

(✓0 + ✓;✓0)i, (4.27)

!�⇥�⇥(✓) := h�⇥(✓0;✓0 + ✓)�⇥(✓
0 + ✓;✓0)i, (4.28)

where �
+

and �⇥ has been defined in equations (4.10) and (4.11). Note that these are coordinate-
independent correlation functions, and also that !�+�⇥(✓) = 0 given that the Universe is statistically
invariant under a parity transformation. From the definitions of �

+

and �⇥,

!�+�+(✓) = cos2(2�✓)!
�1�1(✓) + sin2(2�✓)!

�2�2(✓) + 2 sin(2�✓) cos(2�✓)!
�1�2(✓), (4.29)

!�⇥�⇥(✓) = sin2(2�✓)!
�1�1(✓) + cos2(2�✓)!

�2�2(✓) � 2 sin(2�✓) cos(2�✓)!
�1�2(✓), (4.30)

• they are related to 2-point correlation func.
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and hence ⇠±(✓) are expressed as

⇠
+

(✓) = !�1�1(✓) + !�2�2(✓) = !��

⇤
(✓), (4.31)

⇠�(✓) = cos(4�✓) [!
�1�1(✓) � !�2�2(✓)] + 2 sin(4�✓)!

�1�2(✓) = Re
h
e�4i�✓!��(✓)

i
. (4.32)

On the other hand, from equations (4.3) and (4.4) I also have

C��

⇤

` = C�E�E
`

+ C�B�B
`

, (4.33)

C��

` = e4i�`
�
C�E�E
`

� C�B�B
`

�
, (4.34)

where I used the fact that C�E�B = 0 again due to the invariance under a parity transformation.
Combining the equations above, I finally obtain

⇠
+

(✓) =

Z
d`

(2⇡)2
�
C�E�E
`

+ C�B�B
`

�
ei`·✓ =

Z 1

0

`d`

2⇡

�
C�E�E
`

+ C�B�B
`

�
J
0

(`✓), (4.35)

⇠�(✓) = Re


e�4i�✓

Z
d`

(2⇡)2
e4i�`

�
C�E�E
`

� C�B�B
`

�
ei`·✓

�
=

Z 1

0

`d`

2⇡

�
C�E�E
`

� C�B�B
`

�
J
4

(`✓),

(4.36)
where an integral formula for the Bessel function (equation 4.22) has been used. This result indicates
that two-point correlation functions of shear are indeed related with angular power spectrum of shear.

4.4 Calculation of power spectrum

I now evaluate cosmic shear power spectrum C

`

= C�E�E
`

. From equations (3.27) and (4.2), Fourier
transform of convergence is given by

̃(`) =

Z
d✓ e�i`·✓

Z
�s

0

d�W (�)�
m

(�,✓)

=

Z
d✓ e�i`·✓

Z
�s

0

d�W (�)

Z
dk

(2⇡)3
�̃
m

(k)eik·r

=

Z
d✓ e�i`·✓

Z
�s

0

d�W (�)

Z
dk?
2⇡

dkk
(2⇡)2

�̃
m

(k?,kk)e
i{k?�+fK(�)kk·✓}

=

Z
�s

0

d�
W (�)

f2

K

(�)

Z
dk?
2⇡

�̃
m

✓
k?,

`

f
K

(�)

◆
eik?�, (4.37)
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and hence ⇠±(✓) are expressed as

⇠
+

(✓) = !�1�1(✓) + !�2�2(✓) = !��

⇤
(✓), (4.31)

⇠�(✓) = cos(4�✓) [!
�1�1(✓) � !�2�2(✓)] + 2 sin(4�✓)!

�1�2(✓) = Re
h
e�4i�✓!��(✓)

i
. (4.32)

On the other hand, from equations (4.3) and (4.4) I also have

C��

⇤

` = C�E�E
`

+ C�B�B
`

, (4.33)

C��

` = e4i�`
�
C�E�E
`

� C�B�B
`

�
, (4.34)

where I used the fact that C�E�B = 0 again due to the invariance under a parity transformation.
Combining the equations above, I finally obtain

⇠
+

(✓) =

Z
d`

(2⇡)2
�
C�E�E
`

+ C�B�B
`

�
ei`·✓ =

Z 1

0

`d`

2⇡

�
C�E�E
`

+ C�B�B
`

�
J
0

(`✓), (4.35)

⇠�(✓) = Re


e�4i�✓

Z
d`

(2⇡)2
e4i�`

�
C�E�E
`

� C�B�B
`

�
ei`·✓

�
=

Z 1

0

`d`

2⇡

�
C�E�E
`

� C�B�B
`

�
J
4

(`✓),

(4.36)
where an integral formula for the Bessel function (equation 4.22) has been used. This result indicates
that two-point correlation functions of shear are indeed related with angular power spectrum of shear.

4.4 Calculation of power spectrum

I now evaluate cosmic shear power spectrum C

`

= C�E�E
`

. From equations (3.27) and (4.2), Fourier
transform of convergence is given by

̃(`) =

Z
d✓ e�i`·✓

Z
�s

0

d�W (�)�
m

(�,✓)

=

Z
d✓ e�i`·✓

Z
�s

0

d�W (�)

Z
dk

(2⇡)3
�̃
m

(k)eik·r

=

Z
d✓ e�i`·✓

Z
�s

0

d�W (�)

Z
dk?
2⇡

dkk
(2⇡)2

�̃
m

(k?,kk)e
i{k?�+fK(�)kk·✓}

=

Z
�s

0

d�
W (�)

f2

K

(�)

Z
dk?
2⇡

�̃
m

✓
k?,

`

f
K

(�)

◆
eik?�, (4.37)
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and hence ⇠±(✓) are expressed as

⇠
+

(✓) = !�1�1(✓) + !�2�2(✓) = !��

⇤
(✓), (4.31)

⇠�(✓) = cos(4�✓) [!
�1�1(✓) � !�2�2(✓)] + 2 sin(4�✓)!

�1�2(✓) = Re
h
e�4i�✓!��(✓)

i
. (4.32)

On the other hand, from equations (4.3) and (4.4) I also have

C��

⇤

` = C�E�E
`

+ C�B�B
`

, (4.33)

C��

` = e4i�`
�
C�E�E
`

� C�B�B
`

�
, (4.34)

where I used the fact that C�E�B = 0 again due to the invariance under a parity transformation.
Combining the equations above, I finally obtain

⇠
+

(✓) =

Z
d`

(2⇡)2
�
C�E�E
`

+ C�B�B
`

�
ei`·✓ =

Z 1

0

`d`

2⇡

�
C�E�E
`

+ C�B�B
`

�
J
0

(`✓), (4.35)

⇠�(✓) = Re


e�4i�✓

Z
d`

(2⇡)2
e4i�`

�
C�E�E
`

� C�B�B
`

�
ei`·✓

�
=

Z 1

0

`d`

2⇡

�
C�E�E
`

� C�B�B
`

�
J
4

(`✓),

(4.36)
where an integral formula for the Bessel function (equation 4.22) has been used. This result indicates
that two-point correlation functions of shear are indeed related with angular power spectrum of shear.

4.4 Calculation of power spectrum

I now evaluate cosmic shear power spectrum C

`

= C�E�E
`

. From equations (3.27) and (4.2), Fourier
transform of convergence is given by

̃(`) =

Z
d✓ e�i`·✓

Z
�s

0

d�W (�)�
m

(�,✓)

=

Z
d✓ e�i`·✓

Z
�s

0

d�W (�)

Z
dk

(2⇡)3
�̃
m

(k)eik·r

=

Z
d✓ e�i`·✓

Z
�s

0

d�W (�)

Z
dk?
2⇡

dkk
(2⇡)2

�̃
m

(k?,kk)e
i{k?�+fK(�)kk·✓}

=

Z
�s

0

d�
W (�)

f2

K

(�)

Z
dk?
2⇡

�̃
m

✓
k?,

`

f
K

(�)

◆
eik?�, (4.37)
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and hence ⇠±(✓) are expressed as

⇠
+

(✓) = !�1�1(✓) + !�2�2(✓) = !��

⇤
(✓), (4.31)

⇠�(✓) = cos(4�✓) [!
�1�1(✓) � !�2�2(✓)] + 2 sin(4�✓)!

�1�2(✓) = Re
h
e�4i�✓!��(✓)

i
. (4.32)
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where an integral formula for the Bessel function (equation 4.22) has been used. This result indicates
that two-point correlation functions of shear are indeed related with angular power spectrum of shear.
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where kk and k? are wavenumbers that are parallel and perpendicular to the line-of-sight direction,
respectively. From this expression, correlation of convergence in Fourier space is
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I now make the following additional approximation. When kk � `/f
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which is called the Limber approximation (Limber, 1954). By performing the integration over �0, I
now have a simplified expression for the correlation
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where I added the argument � in the matter power spectrum to make it explicit that the matter
power spectrum at the redshift corresponding to � should be used there. From the definition of
angular power spectrum (equation 4.19), I finally obtain cosmic shear power spectrum
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where the weight function W (�) has been defined in equation (3.28). While equation (4.41) is
su�ciently accurate and is used for cosmological analysis, it should be kept in mind that it is built
on various approximations such as Born approximation, locally flat sky approximation, and Limber
approximation. For instance, it has been shown that the following slightly modified version
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better reproduces the full calculation result at low ` (Loverde & Afshordi, 2008).



• calculated under flat sky, Born, Limber approx.

Cosmic shear power spectrum

matter power spectrum=C𝓁𝜸E𝜸E

ℓ➞ℓ+1/2
improve accuracy at low-ℓ
(Loverde & Afshordi 2008)

4 COSMIC SHEAR POWER SPECTRUM 19
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where I added the argument � in the matter power spectrum to make it explicit that the matter
power spectrum at the redshift corresponding to � should be used there. From the definition of
angular power spectrum (equation 4.19), I finally obtain cosmic shear power spectrum

C

`

=

Z
�s

0

d�
W 2(�)

f2

K

(�)
P
m

✓
`

f
K

(�)
;�

◆
, (4.41)

where the weight function W (�) has been defined in equation (3.28). While equation (4.41) is
su�ciently accurate and is used for cosmological analysis, it should be kept in mind that it is built
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better reproduces the full calculation result at low ` (Loverde & Afshordi, 2008).
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and as a result covariance is simplified as

h
Cov(Ĉ�E�E
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Although this expression of covariance ignores non-Gaussian e↵ects and therefore is not accurate in
general (see e.g., Takada & Jain, 2009; Takada & Hu, 2013, for e↵ects of non-Gaussianity), it has
several important implications. First, covariance is inversely proportional to N

mode,i

, which is an
increasing function of ` for a fixed `-bin width. Hence measurements of power spectrum at low ` is
noisy, due to a large cosmic variance. Second, it is also inversely proportional to the survey area ⌦

s

,
which suggests that the signal-to-noise ratio of cosmic shear measurements is / p

⌦
s

. Third, the
shot noise contributes to covariance, which tends to dominate at large `. Fourth, covariance matrix
is diagonal, which makes various calculations simpler.

5 Cosmology with cosmic shear

5.1 Behavior of power spectrum

In previous Section, I derived cosmic shear power spectrum (equation 4.41), which is essentially
given by the integration of the matter power spectrum along the line-of-sight. On the other hand,
from a large sample of distant galaxies with measurements of their ellipticities, one can in principle
infer the E-mode shear power spectrum (equation 4.51). Therefore cosmological parameters can
be constrained by searching for parameters that best reproduce the observed cosmic shear power
spectrum. In order to understand what kind of constraints will be obtained, however, it is important
to know behavior of cosmic shear power spectrum, including its sensitivity to various parameters.

Figure 6 shows an example of theoretical calculations of cosmic shear power spectrum in the
current standard cosmological model. Since the standard cold dark model predicts large density
fluctuations at small scales, cosmic shear also has a large power at large `. The comparison with
power spectrum computed from the linear matter power spectrum indicates that the nonlinear
evolution of density fluctuations is indeed important for cosmic shear. At very large `, measurements
become very noisy due to large shot noise. Together with the fact that cosmic variance is large at
small ` (see equation 4.56), for a typical case with n̄ = 20 arcmin�2 it is expected that constraints
on cosmological parameters mainly come from ` ⇠ 103.

It is worth noting that the power spectrum is relatively featureless. This is because any features in
matter power spectrum, most notably baryon acoustic oscillations, are smeared out due to projection
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small ` (see equation 4.56), for a typical case with n̄ = 20 arcmin�2 it is expected that constraints
on cosmological parameters mainly come from ` ⇠ 103.

It is worth noting that the power spectrum is relatively featureless. This is because any features in
matter power spectrum, most notably baryon acoustic oscillations, are smeared out due to projection

4 COSMIC SHEAR POWER SPECTRUM 21

Therefore, an observed cosmic shear power spectrum C�E�E,obs
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The second term that is inversely proportional to the angular number density of galaxies is called
the shot noise. Although the shot noise term can be estimated from the observation and therefore
one can obtain C�E�E

`

from the observed data, it is still very important as it contributes to the noise
as I will see below.

4.6 Covariance

Since the measurement error of power spectrum depends on the survey area, Fourier transform
should also be performed in a limited sky area. Let’s assume that the survey region is a rectangular
with the length ⇥. Adopting the size of a cell in ` space as �` = 2⇡/⇥ (i.e., �⌦ = (2⇡/⇥)2),
equation (4.1) is modified as
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The accurate evaluation of this covariance requires knowledge of trispectrum of convergence and
hence is challenging. Here I make a simplified assumption that convergence obeys random Gaussian

shape noisecosmic variance

=Ωs/4π survey area

• non-Gaussian error also important
     (e.g., Takada & Jain 2009; Takada & Hu 2013)
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Parameter dependence
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Figure 6: Left: The solid line shows cosmic shear power spectrum (equation 4.41) for the source
redshift z

s

= 1 and assuming Planck 2018 best-fitting cosmological parameters (Planck Collaboration
et al., 2018). The nonlinear matter power spectrum is computed using a revised halofit model
(Takahashi et al., 2012). The dotted line shows cosmic shear power spectrum computed using the
linear matter power spectrum. Dashed lines show the shot noise (second term of equation 4.49) with
�
✏/2

= 0.4 and three di↵erent source galaxy number densities n̄. Right: Logarithmic derivatives of
cosmic shear power spectrum for three important parameters, source redshift z

s

(solid), matter
density ⌦

m0

(dotted), and the normalization of density fluctuations �
8

(dashed), around the fiducial
model shown in the left panel. When changing ⌦

m0

, ⌦
⇤0

is also changed assuming the flat Universe.

that mixes di↵erent k-modes. Hence the main constraining power of cosmic shear power spectrum
comes from its amplitude.

Figure 6 shows logarithmic derivatives of cosmic shear power spectrum. From this Figure, at
` = 1000 it is found

C

`=1000

/ z1.5
s

⌦1.5

m0

�2.9

8

, (5.1)

around the fiducial model. This well explains the fact that cosmic shear constraints look a ‘banana’
shape in the ⌦

m0

-�
8

plane. It is also found that to constrain S
8

:= �
8

(⌦
m0

/0.3)↵ (↵ ⇡ 0.5) accurately,
say 5%, the average source redshift needs to be known at better than 10% accuracy. Since it is
impractical to obtain spectroscopic redshifts for all the source galaxies used for weak gravitational
lensing measurements, photometric redshifts are usually employed for estimating the average source
redshift, and one challenge for cosmic shear cosmology is to obtain accurate photometric redshifts
for such faint galaxies.

5.2 Cosmic shear tomography

Since weak gravitational lensing probes all the matter fluctuations along the line-of-sight, one cannot
measure redshift evolution of density fluctuations from the analysis of a single galaxy sample. One

Ωm0−σ8 degeneracy

zs is important

(around zs=1, Planck cosmology)
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Shape measurement10 S. BRIDLE ET AL.

FIG. 2. Illustration of the forward problem. The upper panels show how the original galaxy image
is sheared, blurred, pixelised and made noisy. The lower panels show the equivalent process for
(point-like) stars. We only have access to the right hand images.

One good assumption that we can make is that unlensed galaxies are randomly
oriented. In addition we find that the radially averaged 1D galaxy light intensity
profile I (r) is well fit by I (r) = Io exp(−(r/rc)

1/n) [Sersic (1968)], where Io,

FIG. 3. Illustration of the inverse problem. We begin on the right with a set of galaxy and star
images. The full inverse problem would be to derive both the shears and the intrinsic galaxy shapes.
However shear is the quantity of interest for cosmologists.

Bridle+2008 observe 
theseinfer this



Calibration by image simulations
Weak lensing simulations 9

Figure 3. Example simulated images for simulations with the four parent samples as labeled on each plot. All images have the same
zero points, and the symlog color scales are the same on each panel. For the purpose of illustration we have chosen images with the same
PSF model. Dashed red lines show the artificial boundaries between individual postage stamps; we have shown a 5 × 5 postage stamp
region (320 × 320 pixels) out of the simulated image composed of 100 × 100 postage stamps. Note that the color-scale is saturated in
some places for sample 4 simulations, because some of the stamps include bright stars that happen to lie close enough to our central
objects that they are included in the simulations. The sample 3 and sample 4 images look quite different from each other, despite the
choice to not mask nearby objects in either sample, because sample 4 images were created from larger postage stamps (sufficiently large
that they include some irrelevant structures that would never be blended with the central objects). We demonstrate later in this work
that the measured properties of the central galaxies in the postage stamps and their shear calibration biases are very similar in samples
3 and 4 (Fig. 17).

simulations and data, and apply various cuts and selection
criteria in a consistent fashion.

The simulations are specifically designed to include 90◦

rotated pairs of galaxies which can be used to nearly can-
cel out shape noise. This feature is particularly useful for
our estimation of shape measurement errors, as described
below, and to reduce statistical errors on shear biases, en-
abling them to be robustly quantified with fewer simu-
lations. By keeping track of the members of each pairs,
the analysis framework provides several options to apply
this cancellation or not. In all cases, a basic set of flag
cuts are imposed. These are a subset of the cuts in the
‘Basic flag cuts’ section of table 4 of Mandelbaum et al.
(2018) for the shear catalog, where the cuts that are
omitted are unnecessary in the simulations due to how
they were produced. Specifically, for simulations (which are
single-band images with no image artifacts), we only need
the cuts on idetect_is_primary, iflags_badcentroid,

icentroid_sdss_flags, iclassification_extendedness,
and ishape_hsm_regauss_sigma. We also impose a cut spe-
cific to the simulations, requiring that the detection nearest
the center of the postage stamp have a centroid that is a
maximum of 5 pixels from the center; this cut was empiri-
cally determined as a way of eliminating stamps where the
detection nearest the center was not the intended central
object.

After the imposition of those flag cuts, further selection
criteria in the ‘Cuts on object properties’ section of table 4
of Mandelbaum et al. (2018) are imposed based on whether
shape noise cancellation is desired or not. Without shape
noise cancellation, all galaxies passing a given set of cuts
are retained. With shape noise cancellation, pairs where one
member has not been detected by the HSC pipeline are first
discarded, and of the remaining pairs, only those in which
a randomly selected member passes the specified set of cuts
are retained, as to avoid selection bias entirely.

MNRAS 000, 000–000 (0000)

mock images of 
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Mandelbaum+2018
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• PSF leakage into measured shear

Checking systematics

γobs = γtrue + aePSF
≈estar

⟨γobsestar⟩ ≈ a⟨estarestar⟩
• checking by galaxy-star shape correlation

galaxy-star cross star-star auto

• estimate its impact on signal
⟨γobsγobs⟩ = ⟨γtrueγtrue⟩ + a2⟨ePSFePSF⟩

from galaxy-star/star-star

from galaxy
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Photometric redshift estimate

https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/tutorial/astronomy/regression.html

estimate redshift by 
broadband colors
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Figure 6: Left: The solid line shows cosmic shear power spectrum (equation 4.41) for the source
redshift z

s

= 1 and assuming Planck 2018 best-fitting cosmological parameters (Planck Collaboration
et al., 2018). The nonlinear matter power spectrum is computed using a revised halofit model
(Takahashi et al., 2012). The dotted line shows cosmic shear power spectrum computed using the
linear matter power spectrum. Dashed lines show the shot noise (second term of equation 4.49) with
�
✏/2

= 0.4 and three di↵erent source galaxy number densities n̄. Right: Logarithmic derivatives of
cosmic shear power spectrum for three important parameters, source redshift z

s

(solid), matter
density ⌦

m0

(dotted), and the normalization of density fluctuations �
8

(dashed), around the fiducial
model shown in the left panel. When changing ⌦

m0

, ⌦
⇤0

is also changed assuming the flat Universe.

that mixes di↵erent k-modes. Hence the main constraining power of cosmic shear power spectrum
comes from its amplitude.

Figure 6 shows logarithmic derivatives of cosmic shear power spectrum. From this Figure, at
` = 1000 it is found

C

`=1000

/ z1.5
s

⌦1.5

m0

�2.9

8

, (5.1)

around the fiducial model. This well explains the fact that cosmic shear constraints look a ‘banana’
shape in the ⌦

m0

-�
8

plane. It is also found that to constrain S
8

:= �
8

(⌦
m0

/0.3)↵ (↵ ⇡ 0.5) accurately,
say 5%, the average source redshift needs to be known at better than 10% accuracy. Since it is
impractical to obtain spectroscopic redshifts for all the source galaxies used for weak gravitational
lensing measurements, photometric redshifts are usually employed for estimating the average source
redshift, and one challenge for cosmic shear cosmology is to obtain accurate photometric redshifts
for such faint galaxies.

5.2 Cosmic shear tomography

Since weak gravitational lensing probes all the matter fluctuations along the line-of-sight, one cannot
measure redshift evolution of density fluctuations from the analysis of a single galaxy sample. One

(around zs=1, Planck cosmology)

3% σ8 measurement

6% accuracy of zs 

is needed



Photometric redshift error
ph

ot
om

et
ri

c 
re

ds
hi

ft

“true” redshift

outliers

scatter

bias zphoto−ztrue dist.
is complicated
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estimate/propagation
is a big challenge

https://hsc.mtk.nao.ac.jp/ssp/science/photometric-redshfits/
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• calculated under flat sky, Born, Limber approx.

Cosmic shear power spectrum
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where k? and kk are wavenumbers that are perpendicular and parallel to the line-of-sight direction,
respectively. From this expression, correlation of convergence in Fourier space is
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I now make the following additional approximation. When k? � `/f
K

(�), due to the rapid oscil-
lation by eik?(���

0
) it vanishes after integrations over �, given that W (�) is su�ciently broad (see

Figure 4). Hence I consider only modes with k? ⌧ `/f
K

(�), which results in
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which is called the Limber approximation (Limber, 1954). By performing the integration over �0, I
now have a simplified expression for the correlation
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where I added the argument � in the matter power spectrum to make it explicit that the matter
power spectrum at the redshift corresponding to � should be used there. From the definition of
angular power spectrum (equation 4.19), I finally obtain cosmic shear power spectrum
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where the weight function W (�) has been defined in equation (3.28). While equation (4.41) is
su�ciently accurate and is used for cosmological analysis, it should be kept in mind that it is built
on various approximations such as Born approximation, locally flat sky approximation, and Limber
approximation. For instance, it has been shown that the following slightly modified version
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better reproduces the full calculation result at low ` (Loverde & Afshordi, 2008).

4.5 Shot noise

In practice the power spectrum has to be estimated from a discrete galaxy sample, which has an
impact of the measurement of the power spectrum. As discussed in Section 3.2, shapes of galaxies

matter power spectrum=C𝓁𝜸E𝜸E

from N-body simulations
(fitting formula e.g., Takahashi+2012)
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Modification of power spectrum
Baryons & the matter power spectrum 9

total matter power spectrum in a set of simulations of dif-
ferent volumes, and pointed out that scales of k ∼ 3 h/Mpc
are typically dominated by the most massive ones, which
is in line with our conclusions. Overall, our results suggest
that the accuracy of predictions for the impact of baryons on
the matter power spectrum would improve by running larger
volume hydrodynamic simulations with multiple realisations
of the initial conditions.

5.5 Comparison to other hydrodynamical

simulations

Several other groups have quantified the impact of baryons
on the matter power spectrum from their numerical sim-
ulations. Their simulations vary in the numerical tech-
nique implemented, volume, resolution and sub-grid recipes
adopted for baryonic physics processes. In this section, we
discuss how their results compare to Horizon-AGN. Figure
6 shows a comparison of the fractional impact of baryonic
processes on the total matter power spectrum from dif-
ferent simulations at z = 0: the OverWhelmingly Large
Simulations (van Daalen et al. 2011, we refer here to the
‘AGN’ run of OWLS which adopts a WMAP7 cosmol-
ogy), the EAGLE simulation (Hellwing et al. 2016), Illustris
(Vogelsberger et al. 2014) and IllustrisTNG (Springel et al.
2017). The result from Horizon-noAGN is also shown for ref-
erence, in which case there is an enhancement of power due
to efficient cooling of the gas, rather than a suppression of
power. For reference, the simulation volumes are as follows:
OWLS and Horizon are 100 Mpc/h on each side; EAGLE,
100 Mpc on a side; Illustris, 75 Mpc/h on a side and the Illus-
trisTNG runs are 100 and 300 Mpc on a side for “TNG100”
and “TNG300”, respectively.

While the qualitative behaviour of all simulations is sim-
ilar, with a suppression of power due to the effect of AGN
feedback on the gas at k ∼ 10 h/Mpc, the exact scale and
strength of the suppression differs between them. Illustris
shows the largest amount of suppression, reaching over 30%
at scales of k ∼ 5 h/Mpc. This simulation is calibrated to
match the overall observed star formation history of the
Universe, but despite this calibration, their radio mode of
AGN feedback is known to be too aggressive, resulting in
lower than observed gas fractions inside of massive haloes
(Haider et al. 2016).

The OWLS ‘AGN’ run used by van Daalen et al. (2011)
was calibrated to match the M−σ relation (Booth & Schaye
2009; Schaye et al. 2010), similarly to Horizon-AGN, but
differs in other sub-grid recipes (e.g., stellar initial mass
function, stellar feedback prescription, black hole seeding,
and thermal quasar AGN feedback for all accretion rates)
and the numerical method implemented (smoothed-particle-
hydrodynamics). McCarthy et al. (2010) have shown that
this OWLS run reproduces the fraction of gas in mas-
sive haloes and a further exploration, varying some of the
sub-grid parameter models for the AGN feedback imple-
mentation, was performed by McCarthy et al. (2011) and
Le Brun et al. (2014). This is further discussed in Section
6. At z = 0, OWLS predict significantly more suppres-
sion than Horizon-AGN, exceeding 20% at k ∼ 10h/Mpc.

Figure 6. The impact of baryons on the total matter power spec-
trum (∆2

hydro/∆
2
DMO) in Horizon-AGN (solid black) and Horizon-

noAGN (dashed black) compared to the results of other cosmo-
logical simulations at z = 0.

The impact of baryons in the case of OWLS is not as
strong as in the Illustris simulation. This model has been
widely used in the literature for cosmic shear data analy-
sis (Mead et al. 2015), including recent cosmic shear sur-
vey results (Harnois-Déraps et al. 2015; Joudaki et al. 2017;
Krause et al. 2017), and also for forecasting the performance
of future surveys (Semboloni et al. 2011, 2013; Eifler et al.
2015).

The EAGLE simulation (Schaye et al. 2015) is a
smoothed-particle-hydrodynamics simulation with similar
volume to Horizon-AGN and full baryonic physics implemen-
tation. In this case, the simulation was calibrated to match
the relation between stellar mass and halo mass, the present-
day stellar mass function of galaxies and galaxy sizes. EA-
GLE predicts that the impact of baryons on the matter
power spectrum is predominant at scales smaller than in
Horizon-AGN, Illustris or OWLS. The difference in the pre-
ferred scale of suppression is particularly relevant to cosmic
shear surveys adopting a cut on small scales in their analy-
sis (Krause et al. 2017) instead of a marginalisation strategy
(Joudaki et al. 2017).

Springel et al. (2017) recently presented an analysis of
the impact of baryons on the clustering of galaxies and mat-
ter in the IllustrisTNG simulations. IllustrisTNG is a set
of cosmological simulation boxes with different volumes and
physics implementations, and we are interested here in the
comparison to the baryonic and DMO runs. IllustrisTNG im-
plements an updated AGN feedback recipe compared to the
previous Illustris runs (Weinberger et al. 2017), among other
changes (including SN feedback modelling). Their new AGN
sub-grid model includes a different approach of radio kinetic
feedback mode compared to Illustris, which one is very sim-
ilar to the one implemented in Horizon-AGN (Dubois et al.
2012) but with an isotropic momentum/energy injection (Il-
lustrisTNG) instead of being jet-like shaped (Horizon-AGN).

© 0000 RAS, MNRAS 000, 000–000
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• intrinsic galaxy orientations are not random

What is intrinsic alignment?

radial alignment 
• tidal torquing 
• merger/accretion along filament
• …

• important systematics in cosmic shear



Effect of intrinsic alignment 

γtrue = γG + γI

⟨γtrueγtrue⟩ = ⟨γGγG⟩ + ⟨γGγI⟩ + ⟨γIγG⟩ + ⟨γIγI⟩

cosmic shear intrinsic alignment

GG GI GI II

our main interest marginalize over



Effect of intrinsic alignment Intrinsic	Alignments:	Basics

3

Matter overdensity ẟ

zfg

zbg

GI II

GG

Simple physical picture:
• Background galaxies on the 

same line of sight lensed by 
the same (or correlated) 
foreground matter 
à GG correlations

• Foreground galaxies’ shapes 
become correlated with the 
common background tidal 
field 
à II correlations

• Background galaxies lensed 
and foreground galaxies 
locally interact with matter 
overdensities
à GI correlations

(Simon Samuroff)

GG 
cosmic shear signal

II 
same sign as GG

GI 
opposite sign as GG

ℓ

ℓ2Cℓ GG GG+II 
GG+GI 



• nonlinear alignment model (Bridle & King 2007)

Model of intrinsic alignment

γI ∼ − C(∇2
θ1

− ∇2
θ2

+ 2i∇θ1
∇θ2

)Φ

PGI(k) = − C′�Pm(k)

PII(k) = C′�2Pm(k)

intrinsic shape align
with tidal field

(nonlinear) matter 
power spectrum 

B. Joachimi et al.: Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample
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Fig. 9. Projected correlation function wg+ as a function of comoving
transverse separation rp for different MegaZ-LRG subsamples. Top
panel: Shown is wg+ for the MegaZ-LRG sample with the full range in
redshifts. The black solid curve corresponds to the best-fit model when
only varying the amplitude A, without contributions by galaxy-galaxy
lensing. The dotted black line is obtained by using the linear matter
power spectrum instead of the full power spectrum including non-linear
corrections, and identical model parameters otherwise. Bottom panel:
Same as above, but for the MegaZ-LRG sample split into two photo-
metric redshift bins, where results for z < 0.529 are shown in black, and
for z > 0.529 in red. Dotted lines again correspond to models computed
from the linear matter power spectrum. The point for the z < 0.529 sub-
sample at rp ≈ 1 h−1Mpc is negative and thus not shown. Note that the
red points have been slightly offset horizontally for clarity, and that the
error bars are correlated. Only the data points outside the grey region
have been used for the fits.

pendence given in Hirata & Seljak (2004). Note that all intrin-
sic alignment models applied in this work have a fixed depen-
dence on transverse scales. Since the assumption of a linear bias
also enters the model, we again limit the parameter estimation
to scales rp > 6 h−1Mpc. Note that we do not explicitly prop-
agate the errors on the galaxy bias determined in the foregoing
section through to the uncertainty on intrinsic alignment param-
eters, as they are marginal compared to the measurement error
in wg+ (which is dominated by shape noise).

In Fig. 9, the projected correlation functions for the full
MegaZ-LRG sample as well as for the two MegaZ-LRG red-
shift bins, split at z = 0.529, are plotted. The fit results for A
are presented in Table 3. On the scales usable for the fit, the
best-fit gI model, which is also plotted in Fig. 9 for each case,
traces the data points well with reduced χ2-values below one,
whereas for rp ! 1 h−1Mpc points lie several σ above and below
the model curve, possibly indicating strongly nonlinear effects.
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Fig. 10. Projected correlation function wg+ as a function of comoving
transverse separation rp for different SDSS samples. Top panel: Shown
is wg+ for the red SDSS L4 (in black) and L3 (in red) samples. The
curves correspond to the best-fit models when only varying the ampli-
tude A. Bottom panel: Same as above, but for the SDSS LRG medium
brightness sample split into two redshift bins, where results for z < 0.27
are shown in black, and for z > 0.27 in red. The point for the z < 0.27
subsample at the smallest rp is negative and thus not shown. Note that
the red points have been slightly offset horizontally for clarity, and that
the error bars are correlated. Only the data points outside the grey region
have been used for the fits.

The nature of these deviations is unknown, but since they occur
on scales near the virial radius of LRGs, one may hypothesise
that at these ranges of rp, complicated dependencies on the tidal
field or a change in the intrinsic alignment mechanism play a
role. Moreover we find very good agreement between the best-fit
amplitudes obtained for the full MegaZ-LRG sample with differ-
ent values of Πmax.

In addition, we show in Fig. 9 models for wg+ that have been
calculated using the linear matter power spectrum instead of the
nonlinear one in (6), holding all other model parameters fixed.
As expected, the signals for linear and nonlinear power spectrum
coincide on the largest scales, but already at rp ∼ 10 h−1Mpc,
wg+ computed from linear theory drops below the correlation
function that includes nonlinear clustering and yields a worse
fit to the data in case of the full and the high-redshift MegaZ-
LRG sample. Thus, although our analysis is still restricted to
relatively large scales, non-linear effects in the intrinsic align-
ment of galaxies must be taken into account.

We also perform the analysis on wg+ for the SDSS LRG data,
which is divided into three luminosity bins in addition to the two
redshift bins split at z = 0.27, see Table 1. As redshifts are de-
termined spectroscopically in this case, we use (14) to compute
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Fig. 9. Projected correlation function wg+ as a function of comoving
transverse separation rp for different MegaZ-LRG subsamples. Top
panel: Shown is wg+ for the MegaZ-LRG sample with the full range in
redshifts. The black solid curve corresponds to the best-fit model when
only varying the amplitude A, without contributions by galaxy-galaxy
lensing. The dotted black line is obtained by using the linear matter
power spectrum instead of the full power spectrum including non-linear
corrections, and identical model parameters otherwise. Bottom panel:
Same as above, but for the MegaZ-LRG sample split into two photo-
metric redshift bins, where results for z < 0.529 are shown in black, and
for z > 0.529 in red. Dotted lines again correspond to models computed
from the linear matter power spectrum. The point for the z < 0.529 sub-
sample at rp ≈ 1 h−1Mpc is negative and thus not shown. Note that the
red points have been slightly offset horizontally for clarity, and that the
error bars are correlated. Only the data points outside the grey region
have been used for the fits.

pendence given in Hirata & Seljak (2004). Note that all intrin-
sic alignment models applied in this work have a fixed depen-
dence on transverse scales. Since the assumption of a linear bias
also enters the model, we again limit the parameter estimation
to scales rp > 6 h−1Mpc. Note that we do not explicitly prop-
agate the errors on the galaxy bias determined in the foregoing
section through to the uncertainty on intrinsic alignment param-
eters, as they are marginal compared to the measurement error
in wg+ (which is dominated by shape noise).

In Fig. 9, the projected correlation functions for the full
MegaZ-LRG sample as well as for the two MegaZ-LRG red-
shift bins, split at z = 0.529, are plotted. The fit results for A
are presented in Table 3. On the scales usable for the fit, the
best-fit gI model, which is also plotted in Fig. 9 for each case,
traces the data points well with reduced χ2-values below one,
whereas for rp ! 1 h−1Mpc points lie several σ above and below
the model curve, possibly indicating strongly nonlinear effects.
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Fig. 10. Projected correlation function wg+ as a function of comoving
transverse separation rp for different SDSS samples. Top panel: Shown
is wg+ for the red SDSS L4 (in black) and L3 (in red) samples. The
curves correspond to the best-fit models when only varying the ampli-
tude A. Bottom panel: Same as above, but for the SDSS LRG medium
brightness sample split into two redshift bins, where results for z < 0.27
are shown in black, and for z > 0.27 in red. The point for the z < 0.27
subsample at the smallest rp is negative and thus not shown. Note that
the red points have been slightly offset horizontally for clarity, and that
the error bars are correlated. Only the data points outside the grey region
have been used for the fits.

The nature of these deviations is unknown, but since they occur
on scales near the virial radius of LRGs, one may hypothesise
that at these ranges of rp, complicated dependencies on the tidal
field or a change in the intrinsic alignment mechanism play a
role. Moreover we find very good agreement between the best-fit
amplitudes obtained for the full MegaZ-LRG sample with differ-
ent values of Πmax.

In addition, we show in Fig. 9 models for wg+ that have been
calculated using the linear matter power spectrum instead of the
nonlinear one in (6), holding all other model parameters fixed.
As expected, the signals for linear and nonlinear power spectrum
coincide on the largest scales, but already at rp ∼ 10 h−1Mpc,
wg+ computed from linear theory drops below the correlation
function that includes nonlinear clustering and yields a worse
fit to the data in case of the full and the high-redshift MegaZ-
LRG sample. Thus, although our analysis is still restricted to
relatively large scales, non-linear effects in the intrinsic align-
ment of galaxies must be taken into account.

We also perform the analysis on wg+ for the SDSS LRG data,
which is divided into three luminosity bins in addition to the two
redshift bins split at z = 0.27, see Table 1. As redshifts are de-
termined spectroscopically in this case, we use (14) to compute
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Cosmic shear tomography (Hu 1999)
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Intrinsic alignment w/ tomography
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Likelihood analysis

Cmodel
ℓ = Cκκ

ℓ + CIA
ℓ + Csys

ℓ

ℒ ∝ exp [−
1
2 (Cmodel

ℓ − Cobs
ℓ )T (Cov)−1 (Cmodel

ℓ − Cobs
ℓ )]

model power spectrum

cosmic shear
(incl. baryon effect)

intrinsic alignment systematics

explore likelihood

• Markov chain Monte Carlo
• nested sampling
• …



Ongoing cosmic shear surveys

KiDS (2012-2019)
1500 deg2, rlim~25

DES (2013-2019)
5000 deg2, rlim~25

HSC (2014-2020)
1400 deg2, rlim~26

• ‘stage-III’ dark energy surveys
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KiDS+VIKING-450
Hildebrandt+ arXiv:1812.06076

The KiDS collaboration: KiDS+VIKING-450: Cosmic shear tomography with optical+infrared data

Fig. 3. KV450 2-point shear correlation functions ⇠+ (upper-left) and ⇠� (lower-right) plotted as ✓⇥ ⇠±. The errors shown represent the square root
of the diagonal of the analytical covariance matrix. These errors are significantly correlated between scales and redshift bins. The solid red line
corresponds to the best-fit (maximum likelihood) fiducial model from Sect. 7 including baryon feedback, intrinsic alignments, and all corrections
for observational biases.

ning the ✓ range probed by our correlation function measure-
ment. Consistency with a zero signal is quantified by a �2 test
using the shape-noise part of the analytical covariance discussed
in Sect. 5.2. This analysis is carried out for all possible intervals
[nmin, nmax] with 1  nmin  nmax  20. The p-values from the
�2 test are almost all well above 1% indicating no significant B-

modes. For only four out of 210 tested intervals [nmin, nmax] we
find p-values slightly below 1%, but all of these are still well
above 0.1%.

We repeat this test for other ✓ ranges, 00.5 < ✓ < 400,
00.5 < ✓ < 720, 400 < ✓ < 1000, and 80 < ✓ < 3000. Re-
sults yield even higher p-values for these more restricted angu-
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FIG. 4. The measured shear correlation function ⇠+ (top triangle) and ⇠� (bottom triangle) for the DES Y1 METACALIBRATION catalog.
Results are scaled by the angular separation (✓) to emphasize features and differences relative to the best-fit model. The correlation functions
are measured in four tomographic bins spanning the redshift ranges listed in Table I, with labels for each bin combination in the upper left
corner of each panel. The assignment of galaxies to tomographic bins is discussed in Sec. II B. Scales which are not used in the fiducial
analysis are shaded (see Sec. VII A). The best-fit ⇤CDM theory line from the full tomographic analysis is shown as the solid line. We find a
�2 of 227 for 211 degrees of freedom in the non-shaded regions.

and 3) a sample covariance from 1200 lognormal realizations
using our actual DES Y1 footprint.

We show the full halo model correlation matrix for ⇠± as the
lower triangle in Fig. 6. The upper triangle is the difference
of the full halo model correlation matrix and the correlation
matrix resulting from the 1200 lognormal realizations masked
by the DES Y1 footprint. Following the suggestion of an iter-
ative approach to dealing with the cosmological dependence
of covariance matrices proposed by [91], an initial covariance
matrix was calculated using an arbitrary cosmology, but the fi-
nal covariance matrix used in this work was recalculated with
the best-fit cosmology of the initial fiducial result from [52].
We found no significant change in our inferred cosmology due
to this covariance change.

We also test the amplitude of the diagonal of the covari-
ance matrix by comparing the halo model prediction for the
variance of ⇠� on small scales (2.5 < ✓ < 10 arcmin) to the
variance of ⇠� directly estimated from DES Y1 data. To ob-
tain the latter, we divide the shape catalogs into 200 patches of

similar area using the kmeans algorithm17 and take the vari-
ance of the ⇠� measurement in each of them. We find good
agreement between these two approaches within the uncer-
tainty of the estimate of the variance of the ⇠� measurement.

VI. BLINDING

For the DES Y1 analysis, we have maintained a catalog-
level blinding scheme similar to the DES SV analyses, but
rescaling |⌘| = 2 arctanh |e| by a factor between 0.9 and 1.1
(see [92] for a review of blinding in general). This catalog
blinding18 was preserved until the catalogs and primary DES
Y1 cosmological analyses and papers (this work and [52])

17 https://github.com/esheldon/kmeans radec
18 During the internal review process for [39], it was discovered that separate,

but equivalent, oversights in the shear calibration of the two catalogs led
to a substantial fraction (e.g., the linear part in e) of the blinding factor

~1300 deg2, 
shallower

than full depth 



HSC Year 1 power spectrum
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Publications of the Astronomical Society of Japan (2019), Vol. 71, No. 2 43-21

Fig. 4. Comparison of the measured tomographic shear power spectra with our theoretical model with best-fit values for the fiducial !CDM model.
Best-fit IA power spectra of CGG (dotted), −CGI (short dashed), and CII (long dashed) as well as power spectra arising from PSF leakage and PSF
model error, equation (13), (dash-dotted) are also plotted. The redshift range of zbest in each tomographic bin is [0.3, 0.6], [0.6, 0.9], [0.9, 1.2], and
[1.2, 1.5] from 1 to 4. The bottom-right panel shows the measured non-tomographic cosmic shear power spectrum and the model spectra with the
best-fit values from the tomographic analysis. The CII term is so small that it is absent from all panels except for 11. (Color online)

our best-fitting model as

χ2 =χ2
data + χ2

Gauss, (35)

χ2
data =

∑

bb′

(Cobs
b − Cmodel

b )[Cov]−1(Cobs
b′ − Cmodel

b′ ), (36)

χ2
Gauss =

∑

j

[(pobs
j − p̄j )/σ j ]2. (37)

where χ2
data comes from the tomographic E-mode spectra

and χ2
Gauss comes from parameters with Gaussian priors,

i.e., α̃, β̃, &m, and &zi (i = 1 − 4), and p̄j and σ j indicate
the mean value and the standard deviation of each prior,
respectively (see table 6). The degree of freedom (DOF) is

computed as

DOF = Ndata − Neff, (38)

where Ndata is 60, corresponding to the number of data
points of the tomographic E-mode spectra in the four tomo-
graphic bins (figure 4), and Neff represents the effective
number of parameters that the data constrain. We compute
Neff as (Raveri & Hu 2019)

Neff = Npara − tr[C−1
priorCpost], (39)

where Npara is the number of parameters including both cos-
mology and nuisance parameters (14 in the fiducial setup),
Cprior is the covariance of prior distributions, and Cpost is the
covariance of posterior distributions. The effective number
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we treat γ̂ as a nuisance parameter with a flat prior for a

wide range 0< γ̂< 5×10−3. We constrain γ̂ to be positive,

because only the square of γ̂ enters ξ+.

5.2.4 Effective number of free parameters

It should be noted that not all the model parameters

should be considered to be free as more than half of them

are tightly constrained by priors. In other words, poste-

riors of those parameters are not driven by data but are

dominated by priors, and fixing those parameters does not

significantly change the cosmological constraints. In fact,

as will be found in the following sections, although the to-

tal number of model parameters is 14 for our fiducial case

(5 cosmological, 2 astrophysical, and 7 systematics param-

eters, see Table 2), only three of them (Ωc, As, and AIA)

are constrained by the data with much narrower posterior

distributions than with priors. Therefore, the standard

definition of degree-of-freedom (d.o.f.) Nd−Np(= 170−14

for our fiducial case) is likely to be an underestimation. A

conservative choice of the effective number of free param-

eters (Neff
p ) should account for only these three parame-

ters5.

6 Results

In this section we first present cosmological constraints

from our cosmic shear analysis. We then discuss the ro-

bustness of the results against various systematics, and fi-

nally we perform internal consistency checks among differ-

ent choices of angular ranges and of tomographic redshift

bins.

6.1 Cosmological constraints in the fiducial flat

ΛCDM model

First we compare the HSC tomographic cosmic shear

TPCFs with the theoretical model with best-fit parame-

ter values for the fiducial flat ΛCDM model in Figure 4,

in which the measured ξ+ are corrected for the PSF leak-

age and PSF modeling errors with equation (7). In these

plots, error bars represent the square-root of the diagonal

elements of the covariance matrix. We find that our model

with the fiducial parameter setup reproduces the observed

tomographic cosmic shear TPCFs quite well. The χ2 value

for the best-fit parameter set is χ2 =162.3 for the effective

d.o.f. of 170− 3 = 167, resulting in a p-value of 0.588.

We marginalize over a total of 14 model parameters

(5 cosmological, 2 astrophysical, and 7 systematics pa-

5 See Raveri & Hu (2019) and Section 6.1 of Hikage et al. (2019) for a more

mathematically robust way to define the effective number of free parame-

ters.

Fig. 4. Comparison of the HSC tomographic cosmic shear TPCFs with the

best-fitting theoretical model for the fiducial flat ΛCDM model. Upper and

lower triangular-tiled panels show ξ+ and ξ− , respectively. The measured

ξ+ are corrected for the PSF leakage and PSF modeling errors. Error bars

represent the square-root of the diagonal elements of the covariance matrix.

The solid line corresponds to the best-fit (maximum likelihood) fiducial model

including the residual multiplicative bias correction shown in equation (21).

Vertical dotted lines show the angular ranges used for the likelihood analysis.

Note that we have multiplied by θ and used a linear scale, unlike Fig. 2.

Publications of the Astronomical Society of Japan, (2018), Vol. 00, No. 0 15

we treat γ̂ as a nuisance parameter with a flat prior for a

wide range 0< γ̂< 5×10−3. We constrain γ̂ to be positive,

because only the square of γ̂ enters ξ+.

5.2.4 Effective number of free parameters

It should be noted that not all the model parameters

should be considered to be free as more than half of them

are tightly constrained by priors. In other words, poste-

riors of those parameters are not driven by data but are

dominated by priors, and fixing those parameters does not

significantly change the cosmological constraints. In fact,

as will be found in the following sections, although the to-

tal number of model parameters is 14 for our fiducial case

(5 cosmological, 2 astrophysical, and 7 systematics param-

eters, see Table 2), only three of them (Ωc, As, and AIA)

are constrained by the data with much narrower posterior

distributions than with priors. Therefore, the standard

definition of degree-of-freedom (d.o.f.) Nd−Np(= 170−14

for our fiducial case) is likely to be an underestimation. A

conservative choice of the effective number of free param-

eters (Neff
p ) should account for only these three parame-

ters5.

6 Results

In this section we first present cosmological constraints

from our cosmic shear analysis. We then discuss the ro-

bustness of the results against various systematics, and fi-

nally we perform internal consistency checks among differ-

ent choices of angular ranges and of tomographic redshift

bins.

6.1 Cosmological constraints in the fiducial flat

ΛCDM model

First we compare the HSC tomographic cosmic shear

TPCFs with the theoretical model with best-fit parame-

ter values for the fiducial flat ΛCDM model in Figure 4,

in which the measured ξ+ are corrected for the PSF leak-

age and PSF modeling errors with equation (7). In these

plots, error bars represent the square-root of the diagonal

elements of the covariance matrix. We find that our model

with the fiducial parameter setup reproduces the observed

tomographic cosmic shear TPCFs quite well. The χ2 value

for the best-fit parameter set is χ2 =162.3 for the effective

d.o.f. of 170− 3 = 167, resulting in a p-value of 0.588.

We marginalize over a total of 14 model parameters

(5 cosmological, 2 astrophysical, and 7 systematics pa-

5 See Raveri & Hu (2019) and Section 6.1 of Hikage et al. (2019) for a more

mathematically robust way to define the effective number of free parame-

ters.

Fig. 4. Comparison of the HSC tomographic cosmic shear TPCFs with the

best-fitting theoretical model for the fiducial flat ΛCDM model. Upper and

lower triangular-tiled panels show ξ+ and ξ− , respectively. The measured

ξ+ are corrected for the PSF leakage and PSF modeling errors. Error bars

represent the square-root of the diagonal elements of the covariance matrix.

The solid line corresponds to the best-fit (maximum likelihood) fiducial model

including the residual multiplicative bias correction shown in equation (21).

Vertical dotted lines show the angular ranges used for the likelihood analysis.

Note that we have multiplied by θ and used a linear scale, unlike Fig. 2.



Constraints on Ωm and σ8

The KiDS collaboration: KiDS+VIKING-450: Cosmic shear tomography with optical+infrared data

Fig. 4. Marginalised posterior contours (inner 68% confidence level, outer 95% confidence level) in the ⌦m-�8 plane (left) and the ⌦m-S 8 plane
(right) for the fiducial KV450 setup (blue), the optical-only KiDS-450 analysis from H17 (green), DESy1 using cosmic shear only (purple;
Troxel et al. 2018b), HSC-DR1 cosmic shear (orange; Hikage et al. 2019), and the Planck-Legacy analysis (red; Planck Collaboration et al. 2018,
TT+TE+EE+lowE).

The model fits the data very well yielding a �2 = 180.6
for 181 degrees of freedom15. This is a significant improvement
compared to H17, which we attribute mostly to the more accu-
rate covariance matrix (see also Troxel et al. 2018a) but possibly
also to better internal consistency (see Sect. 7.4).

Looking at the other model parameters we find that the in-
trinsic alignment amplitude is consistent with unity, in very good
agreement with H17, Troxel et al. (2018b), and Hikage et al.
(2019). The value and error of the baryon feedback amplitude B
indicate a significant departure from a dark matter only scenario
(similar to Joudaki et al. 2018, who use a wider prior but also
additional data). The two c-term nuisance parameters �c and Ac
are not constrained by the data and the five �zi parameters are all
consistent with zero but also strongly prior-dominated.

In the following we describe results from further tests that
divert from the fiducial setup or change the selection of the data
vector. This is done to check the robustness of the fiducial re-
sults against di↵erent choices that were made in the analysis and
to relate our results more easily to literature measurements. Ta-
ble 5 summarises the di↵erent setups that we test via additional
MCMC runs. For most of these setups we vary only one aspect
at a time to keep things comparable. The resulting S 8 values for
all setups are shown in Fig. 6, and some additional parameters
of interest are reported in Table 6.

7.2. Tests of the redshift distributions

The most unique aspect of the cosmic shear measurement pre-
sented here is the estimate of the redshift distributions that are
needed to interpret the signal. In this section we show how dif-
ferent choices for the redshift distribution a↵ect the results and in
particular the main conclusion about the tension between KV450
and Planck. As a first set of tests (setups no. 1-9 from Table 5)
we substitute the DIR n(z) that is based on the full spectro-
scopic calibration sample with di↵erent alternatives as described
in Sect. 3.2. For these MCMC runs we do not re-calculate the
error on the mean redshifts and assume that these errors, which

15 Note that many of our parameters are constrained by the priors. So
this somewhat naïve estimate of the degrees of freedom is just an ap-
proximation.

serve to define the Gaussian priors on the �zi parameters, are
identical to the DIR bootstrap analysis with the full spec-z sam-
ple. This assumption enhances di↵erences rather than diluting
them.

Figure 5 shows the results in the ⌦m-�8 and ⌦m-S 8 planes
for setups no. 6 & 9, corresponding to the tests with the
COSMOS-2015 based DIR n(z) and the OQE-shift n(z) (both
redshift distributions are shown in Fig. C.1), respectively, in
comparison to the fiducial setup and Planck. These two setups
were chosen because they yield the highest and lowest S 8 val-
ues, respectively. All other setups no. 1-9 lie in between those
extremes. The two extremes with the highest and lowest S 8 val-
ues are discrepant with Planck at the 1.7� and 2.9� level, re-
spectively, in terms of their marginal errors on S 8. Compared to
the fiducial KV450 setup the OQE-shift setup no. 9 yields an S 8
that is 0.7� lower whereas the DIR-C15 setup no. 6 is 0.6� high
compared to the fiducial value of S 8.

Figure 6 and Table 6 show that all redshift distributions
tested here yield S 8 values that are consistent within ⇠ 1�.
However, it should be noted that these data points are corre-
lated because a large fraction of the spec-z calibration sample
is the same for most setups, the clustering-z setups no. 7–9 and
the COSMOS-2015 setup no. 6 being exceptions. The highest
S 8 values (and correspondingly the lowest mean redshifts) are
obtained with the DIR method when using the COSMOS-2015
photo-z catalogue instead of the spec-z catalogue or when ex-
cluding DEEP2 (the highest-redshift spec-z catalogue) from the
spec-z calibration sample. The lowest S 8 values are measured
for the DIR n(z) when COSMOS and VVDS are excluded from
the spec-z calibration sample and the two setups that are based
on shifting the fiducial DIR n(z) to best fit the CC and OQE mea-
surements. The range spanned by these di↵erent choices for the
n(z) can be regarded as a very conservative estimate of the sys-
tematic uncertainty introduced by the redshift distributions.

As a further test we check the influence of the assumption
of uncorrelated �zi uncertainties. The mean redshift estimates of
our tomographic bins are indeed significantly correlated as our
bootstrap analysis tells us (⇠ 90% correlation for neighbouring
bins and ⇠ 40 � 70% for more widely separated bins). Assum-
ing full correlation the formula presented in Hoyle et al. (2018)
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Cosmic shear: current status

Kilbinger 2015 + recent updates 
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• statistical fluctuations
    − can be checked with larger datasets

Origin of  “σ8 tension”

• common systematics
    − zphot calibrated by COSMOS (but see KiDS+VIKING)

    − theoretical model incl. Pm(k), baryon, …
    − unknowns

• ΛCDM is wrong
    − most exciting!



Consistency tests

NASA/WMAP science team

initial condition
from CMB

observations of
density fluctuations

consistent?

evolution assuming
standard model

• clue to nature of dark matter/energy?

wrong??



Future prospect
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CMB constraints. Current γ constraints are taken from Rapetti et al. (2009) who make a measurement under 
the assumption of flatness; we do not make this assumption, so the improvement derived for this parameter 
should be considered a conservative estimate. 
Table 2.2: A summary of the forecasted cosmology constraints from Euclid. The figure of merit (FoM) is listed in the 
last column. Note that a larger FoM is better. Euclid Primary: Combined constraints from Euclid weak lensing 
tomography and galaxy clustering. Euclid All: Constraints from primary probes combined with galaxy clusters and 
ISW. Current constraints from Rapetti et al. (2009), Komatsu et al. (2010) and Suzuki et al. (2011). Improvement 
Factor: improvement over the current constraints compared to the Euclid+Planck case. For modified gravity a simple 
parameterisation of the growth factor f(z)=Ωm

γ is used. The neutrino mass mν/eV is the total mass summed over all 
species, assuming a degenerate hierarchy. All constraints are 1σ predicted errors marginalised over all other 
parameters (Ωm: 0.25, ΩΛ: 0.75, Ωb: 0.0445, σ8: 0.8, ns: 1.0, h: 0.7). Here we use expected 2-point (TT, ET, EE, BB) 
correlations from Planck, and do not include CMB lensing. 

 Modified 
Gravity Dark Matter Initial 

Conditions Dark Energy 

Parameter γ mν/eV fNL wp wa FoM 

Euclid Primary  0.010 0.027 5.5 0.015 0.150 430 

Euclid All 0.009 0.020 2.0 0.013 0.048 1540 

Euclid+Planck 0.007 0.019 2.0 0.007 0.035 4020 

Current 0.200 0.580 100 0.100 1.500 ~10 

Improvement Factor 30 30 50 >10 >50 >300 

 
The FoM provides a convenient way to assess the statistical power of a combination of measurements, but 
does not take into account the detrimental effects of systematic errors. Hence a means to assess the influence 
of such biases is critical: the FOM only makes sense if systematic errors are negligible. In this particular 
respect, the Euclid mission can be compared to HST Key Project on the Hubble constant H0, which primarily 
focused on reducing the systematics on absolute calibration of a few highly resolved Cepheids (Freedman et 
al., 2001). The primary strength of Euclid is its control of biases produced by systematics and on the use of 
several methods jointly, applied to the same survey. The primary probes are individually sufficiently precise 
to test for consistency between results. This ability is critical given the profound implications of an observed 
deviation from the concordance model and is lost if the statistical uncertainty of any individual probe is large 
compared to the objective. Although a FoM~400 may appear achievable if current constraints are combined 
with future data from the Dark Energy Survey (DES 1 ), the Baryon Oscillation Spectroscopic Survey 
(BOSS2), and Planck, the relatively large uncertainties of the individual ground-based probes prevents their 
internal consistency to be determined. The debate about the value of the H0 provides a well-known example: 
both sides claimed small statistical uncertainties (i.e. large FoM), yet the actual values were different. 

Our forecast results are an improvement over the numbers presented in the Yellow Book (Assessment Phase 
Study Report) because we now include the full galaxy power spectrum. Previously only the localised BAO 
peak position was used, which contains less information. We also include realistic secondary dark energy 
probes for the “Euclid All” scenario in Table 2.2. By themselves the secondary probes constrain the dark 
energy properties to Δwp=0.05 and FoM=55; however in combination with the weak lensing and clustering 
results, the sum is much more than the individual parts leading to a substantially improvement FoM>1500. 
The results presented here are consistent with the findings of the ESA-ESO working group on fundamental 
cosmology (Peacock et al., 2006), the NASA Dark Energy Task Force (Albrecht et al., 2006) as well as 
numerous papers available on the predicted constraints obtainable for the Euclid cosmological probes. 

                                                      
1 http://www.darkenergysurvey.org/reports/proposal-standalone.pdf 
2 http://www.sdss3.org/collaboration/description.pdf and Eisenstein et al. (2011) 

(from the Euclid red book 2012)

• ESA satellite mission, launch 2022

• observes ~15,000 deg2 of extragalactic sky

https://www.euclid-ec.org
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• shape measurements (blending)
    − extensive simulations incl. blending
    − calibrations with deeper/higher res. images

• photometric redshifts
    − near-IR images for improvements
    − deep spec-z sample for fair calibrations
    − clustering redshift?

Mitigating systematic errors 



Blending 

(a) D2015 J091618.93+29497.3 (b) D2015 J091623.84+294927.7 

(c) D2015 J091620.65+29495.9 (d) D2015 J091619.74+294857.3 

(e) D2015 J091610.65+294856.5 

(g) D2015 J091615.25+294850.4 

(f) D2015 J091603.65+295252.3 

Figure 6: An illustration of the issues with unrecognized blends ( c� AAS. Reproduced with

permission, from Dawson et al. 2016). Each pair of images shows a ground-based (left) and

space-based (right) image of the same system, with the shapes of the galaxy detection in

the ground-based and space-based images shown as red and green ellipses.

to quantify their rate of occurrence, and apply analysis-level mitigation strategies.

For weak lensing, the primary concerns are the impact of blending on shear and photo-

metric redshifts. If we consider unrecognized blends, then two objects at the same redshift

should have the same shear, and therefore it should be possible to properly calibrate shear

estimates for the combined (non-deblended) object. However, for photometric redshifts of

unrecognized blends at the same redshift, the situation is only simple if the two objects

have the same spectral energy distribution (SED). If they do not, then the composite ob-

ject will correspond to some possibly strange SED, which may not give a correct photo-z.

If the objects are at di↵erent redshifts, it is unclear how the shear estimate should be in-

terpreted (though the case of large flux ratios or small redshift di↵erences is simpler than

the completely general case). The photometric redshift estimation is also complexified by

the superposition of SEDs at di↵erent redshifts, even for reasonably large flux ratios. Un-

fortunately, the majority of unrecognized blends will be at di↵erent redshifts (Kirkby et al.

in prep.), except perhaps in the centers of galaxy clusters.

The weak lensing community has recently come to confront the issue of blends more

directly; this area requires more work, both on the deblending algorithms and the post-

deblender systematics quantification and mitigation. In the past, it was common practice to
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Figure 4. Top: A comparison of simulated photo-z vs spec-z performance for LSST and LSST+Euclid using the methodology
described in Stickley et al. (2016). Clear improvement in the performance can be seen. Bottom: The �NMAD defined as
1.48⇥median(|�z|/(1 + zspec)) and outlier fraction (defined as the fraction of objects with |�z|/(1 + zspec) < 0.15) in redshift
bins of 0.2 are shown for the simulation. In these simulations, both the dispersion and outlier fraction improve by a factor of
⇠ 2 between 1.5 < z < 3.

from the other survey, while using internal galaxy shape
estimates, then a comparison of the inferred survey mass
density should agree in the absence of relative shear cal-
ibration biases. Amon et al. (2017) o↵er a recent exam-
ple of this type of comparison using KiDS i and r-band
data with very di↵erent depths. All such comparisons
should be done at the level of inferred shears (or inferred
surface mass densities), not per-object galaxy shapes.
Per-galaxy shapes measured using di↵erent algorithms
should not necessarily agree depending on di↵erences in
weighting schemes and resolution of the imaging data,
so comparison must be done using the quantity that is
really of interest - the ensemble shear estimate.

4.3. Weak Lensing S/N and Photo-z Accuracy: An
Example

We provide here an example calculation (with some
simplifying assumptions), demonstrating that the weak
lensing S/N is increased due to the improved photo-z
accuracy in the overlap area between Euclid and LSST.
Future e↵orts will do more complete calculations and
full joint dark energy forecasts for the Euclid and LSST
combination. We include this calculation as a prelimi-
nary demonstration of the power of combining these two
surveys.
To this end, we consider the S/N for measuring the

shear power spectrum from the Euclid and LSST data
and the cross-correlation spectra between sources in the
common area. For this analysis, we first assume that

optical optical+NIR

NIR important
for good photo-z

Rhodes+2017



Clustering redshift
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χ

; χ)

cross-correlation signal
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(e.g., Newman 2008) 



• intrinsic alignments, measurement and model

• improved theory of Pm(k) incl. baryon effect

• real versus Fourier space

• fast and accurate estimate of covariance

• model predictions in various cosmo. models

• analysis beyond 2-point statistics

Other challenges



• cosmic shear cosmology is getting one of 
the main probes of cosmology

• exciting future plans and challenges for them

• many other interesting related topic: cross-
correlations, CMB lensing, …

    

Summary


