http://www-utap.phys.s.u-tokyo.ac.jp/~oguri/lecture/2020kek/

Recent progress of cosmic shear cosmology

Masamune Oguri (RESCEU/Physics/Kavli IPMU, Univ. of Tokyo)

2020/1/22 Cosmological Structures in the Era of Large Surveys@KEK

Plan of this talk

- recap of basic cosmic shear theory
- analysis procedure
- ongoing cosmic shear surveys
- future prospect

Why gravitational lensing?

- **Millennium Simulation Proje**
- density fluctuations contain rich information
- ≈ dark matter density ← directly probed by gravitational lensing!

Consistency tests

• clue to nature of dark matter/energy?

Weak lensing distortions

convergence K

not easy to measure

shear γ

measured from galaxy shapes

Convergence and shear

Connection w/ density fluctuation

from lens potential + Poisson equation

$$\kappa(\boldsymbol{\theta}) = \int_0^{\chi_{\rm s}} d\chi \, W(\chi) \delta_{\rm m}(\chi, \boldsymbol{\theta})$$

convergence
= projected surface density

$$W(\chi) \coloneqq \frac{4\pi G}{c^4} \frac{f_K(\chi_{\rm s} - \chi) f_K(\chi)}{f_K(\chi_{\rm s})} \rho_{\rm m} a^2$$
$$= \frac{3\Omega_{\rm m0} H_0^2}{2c^2} \frac{f_K(\chi_{\rm s} - \chi) f_K(\chi)}{a f_K(\chi_{\rm s})}$$

weight along line-of-sight

E/B decomposition

γι, γ2 local coordinate-dependent

E/B decomposition

 (α)

Defining power spectrum

• angular power spectrum in Fourier space

 $\langle \tilde{\kappa}(\boldsymbol{\ell}) \tilde{\kappa}(\boldsymbol{\ell}') \rangle \coloneqq (2\pi)^2 \delta^{\mathrm{D}}(\boldsymbol{\ell} + \boldsymbol{\ell}') C_{\boldsymbol{\ell}}^{\kappa\kappa}$ $\langle \tilde{\gamma}_i(\boldsymbol{\ell}) \tilde{\gamma}_j(\boldsymbol{\ell}') \rangle \coloneqq (2\pi)^2 \delta^{\mathrm{D}}(\boldsymbol{\ell} + \boldsymbol{\ell}') C_{\boldsymbol{\ell}}^{\gamma_i \gamma_j}$

• they are related to 2-point correlation func.

$$\xi_{+}(\theta) = \int_{0}^{\infty} \frac{\ell d\ell}{2\pi} \left(C_{\ell}^{\gamma_{\rm E}\gamma_{\rm E}} + C_{\ell}^{\gamma_{\rm B}\gamma_{\rm B}} \right) J_{0}(\ell\theta) \qquad \left\langle \mathbf{\gamma}_{+}\mathbf{\gamma}_{+} \right\rangle_{+} \left\langle \mathbf{\gamma}_{\times}\mathbf{\gamma}_{\times} \right\rangle$$
$$\xi_{-}(\theta) = \int_{0}^{\infty} \frac{\ell d\ell}{2\pi} \left(C_{\ell}^{\gamma_{\rm E}\gamma_{\rm E}} - C_{\ell}^{\gamma_{\rm B}\gamma_{\rm B}} \right) J_{4}(\ell\theta) \qquad \left\langle \mathbf{\gamma}_{+}\mathbf{\gamma}_{+} \right\rangle_{-} \left\langle \mathbf{\gamma}_{\times}\mathbf{\gamma}_{\times} \right\rangle$$

 γ_+

Cosmic shear power spectrum

• calculated under flat sky, Born, Limber approx.

$$C_{\ell}^{\kappa\kappa} = \int_0^{\chi_{\rm s}} d\chi \frac{W^2(\chi)}{f_K^2(\chi)} P_{\rm m}\left(\frac{\ell}{f_K(\chi)};\chi\right)$$

matter power spectrum

Cosmic shear power spectrum

• calculated under flat sky, Born, Limber approx.

$$C_{\ell}^{\kappa\kappa} = \int_{0}^{\chi_{s}} d\chi \frac{W^{2}(\chi)}{f_{K}^{2}(\chi)} P_{m}\left(\frac{\ell}{f_{K}(\chi)};\chi\right)$$

$$= \mathbb{C}_{\ell}^{\mu} \mathbb{P}_{\ell}$$

$$\mathcal{U} \to \mathcal{U} + 1/2$$
improve accuracy at low- \mathcal{U}
(Loverde & Afshordi 2008)

Covariance

measurement error under Gaussian approx.

 $0 \sqrt{2}$

$$\begin{bmatrix} \operatorname{Cov}(\hat{C}_{\ell}^{\gamma_{\mathrm{E}}\gamma_{\mathrm{E}}}) \end{bmatrix}_{ij} = \frac{2\delta_{ij}}{N_{\mathrm{mode},i}} \left(C_{\ell,i}^{\gamma_{\mathrm{E}}\gamma_{\mathrm{E}}} + \frac{\sigma_{\ell/2}^{2}}{2\bar{n}} \right)^{2}$$

$$\begin{array}{l} \text{cosmic variance shape noise} \\ N_{\mathrm{mode},i} \coloneqq \frac{\pi \left(\ell_{i,\max}^{2} - \ell_{i,\min}^{2} \right)}{\Delta \ell^{2}} = f_{\mathrm{sky}} \left(\ell_{i,\max}^{2} - \ell_{i,\min}^{2} \right) \\ = \overline{\Omega_{\mathrm{s}}/4\pi} \text{ survey area} \end{array}$$

 non-Gaussian error also important (e.g., Takada & Jain 2009; Takada & Hu 2013)

Example of C_{ℓ}

Parameter dependence

Analysis procedure

• real world is messy

Real vs Fourier space						
	Real space $\xi_{\pm}(\theta)$	Fourier space C _c				
measurement	easy	difficult				
theoretical modeling	difficult	easy				
popularity	(so far) (so far) (so far) Iess popu					

Analysis procedure: summary

Galaxy shape measurement

Shape measurement

Galaxies: Intrinsic galaxy shapes to measured image:

Calibration by image simulations

Mandelbaum+2018

Checking systematics

• PSF leakage into measured shear

 $\gamma_{\rm obs} = \gamma_{\rm true} + ae_{\rm PSF}$

from galaxy

≈**e**star

• checking by galaxy-star shape correlation $\langle \gamma_{obs} e_{star} \rangle \approx a \langle e_{star} e_{star} \rangle$

galaxy-star cross star-star auto

• estimate its impact on signal $\langle \gamma_{obs} \gamma_{obs} \rangle = \langle \gamma_{true} \gamma_{true} \rangle + \frac{a^2}{e_{PSF}} e_{PSF} \rangle$ from galaxy-star/star-star

Photometric redshift

Photometric redshift estimate

https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/tutorial/astronomy/regression.html

Photometric redshift error

"true" redshift z_{30band}

Cosmic shear modeling

Cosmic shear power spectrum

• calculated under flat sky, Born, Limber approx.

$$C_{\ell}^{\kappa\kappa} = \int_{0}^{\chi_{s}} d\chi \frac{W(\chi)}{f_{K}^{2}(\chi)} P_{m}\left(\frac{\ell}{f_{K}(\chi)};\chi\right)$$

=Cerer matter power spectrum
from N-body simulations
(fitting formula e.g., Takahashi+2012)

Effect of baryon physics

halo (DM)

star formation by radiative cooling **P(k) increase**

gas expelled by feedback **P(k) decrease**

Modification of power spectrum

significant impact

large simulation dependence (subgrid physics)

Intrinsic alignment

What is intrinsic alignment?

• intrinsic galaxy orientations are **not** random

radial alignment

- tidal torquing
- merger/accretion along filament

• • • •

• important systematics in cosmic shear

Effect of intrinsic alignment

$$\gamma_{\rm true} = \gamma_{\rm G} + \gamma_{\rm I}$$

cosmic shear intrinsic alignment

Effect of intrinsic alignment

GG cosmic shear signal II same sign as GG GI opposite sign as GG

Model of intrinsic alignment

• nonlinear alignment model (Bridle & King 2007)

Cosmic shear tomography (Hu 1999)

into different z bins

- evolution of δ_m
- mitigate intrinsic alignment

Intrinsic alignment w/ tomography

auto/cross power spectra

help break degeneracy between cosmic shear and intrinsic alignment

(e.g., Heymans+2013)

Likelihood analysis

Likelihood analysis

model power spectrum

explore likelihood

$$\mathscr{L} \propto \exp\left[-\frac{1}{2}\left(C_{\ell}^{\text{model}} - C_{\ell}^{\text{obs}}\right)^{T} (\text{Cov})^{-1}\left(C_{\ell}^{\text{model}} - C_{\ell}^{\text{obs}}\right)\right]$$

- Markov chain Monte Carlo
- nested sampling
- ...

Ongoing cosmic shear surveys

• 'stage-III' dark energy surveys

KiDS (2012-2019) **DES** (2013-2019) **HSC** (2014-2020) 1500 deg², $r_{lim} \sim 25$ 5000 deg², $r_{lim} \sim 25$ 1400 deg², $r_{lim} \sim 26$

Weak lensing capability

Hildebrandt+ arXiv:1812.06076

KiDS+VIKING-450

450 deg² data

near-IR data from VIKING

Troxel+ Phys. Rev. D98(2018)043528

DES Year I

Hikage, MO+ PASJ 71 (2019)43

HSC Year I power spectrum

~140 deg², full depth

analysis in Fourier space

Hamana, .., MO+ arXiv:1906.06041

HSC Year I correlation function

Constraints on Ω_m and σ_8

S₈ from cosmic shear consistently smaller than **Planck**

Cosmic shear: current status

Zoom-in

Origin of " σ_8 tension"

- statistical fluctuations
 - can be checked with larger datasets
- common systematics
 - z_{phot} calibrated by COSMOS (but see KiDS+VIKING)
 - theoretical model incl. $P_m(k)$, baryon, ...
 - unknowns
- ACDM is wrong
 most exciting!

• clue to nature of dark matter/energy?

Future prospect

Euclid

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	y	m√eV	$f_{\scriptscriptstyle NL}$	<i>w</i> _p	Wa	FoM
Euclid Primary	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>50	>300

(from the Euclid red book 2012)

- ESA satellite mission, launch 2022
- observes ~15,000 deg² of extragalactic sky

Euclid imaging survey

optical (ugriz) data from ground is crucial for photo-z

Large Synoptic Survey Telescope

8.4-m telescope in Chile
urgriz imaging, 30000 deg²
time domain survey
survey from 2023

Large Synoptic Survey Telescope Vera C. Rubin Observatory (VRO)/ Legacy Survey of Space and Time (LSST)

8.4-m telescope in Chile urgriz imaging, 30000 deg² time domain survey survey from 2023

https://www.lsst.org

Number of galaxies number **†** LSST very small 109 **Euclid** statistical errors stage-IV DES systematic 108 HSC errors have to **KiDS** be very small stage-III 107 year 2025 2030 2020

Mitigating systematic errors

- shape measurements (blending)
 - extensive simulations incl. blending
 - calibrations with deeper/higher res. images
- photometric redshifts
 - near-IR images for improvements
 - deep spec-z sample for fair calibrations
 - clustering redshift?

Blending

very important for weak lensing with deep imaging

need more studies

Near-infrared images

NIR important for good photo-z

Clustering redshift

Other challenges

- intrinsic alignments, measurement and model
- improved theory of $P_m(k)$ incl. baryon effect
- real versus Fourier space
- fast and accurate estimate of covariance
- model predictions in various cosmo. models
- analysis beyond 2-point statistics

Summary

- cosmic shear cosmology is getting one of the main probes of cosmology
- exciting future plans and challenges for them
- many other interesting related topic: crosscorrelations, CMB lensing, ...