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銀河団
• 宇宙最大の自己重力束縛系

• ダークマターが卓越

• いろいろな方法で観測
   ー 可視光 (メンバー銀河)

   ー X線
   ー 電波 (Sunyaev-Zel’dovich)

   ー 重力レンズ

A
bell1689

Bullet cluster

(NASA/ESA)



銀河団で調べるダークマター
• 現在の標準理論（仮定）：
   冷たい無衝突ダークマター

• その性質の仮定はダーク
   マター分布に本質的に重要
   ー NFW分布
   ー 大きな非球対称性
   ー 星分布とちいさなズレ

• 重力レンズはダークマター
   の性質の解明にすでに大きな貢献

http://www.mpa-garching.mpg.de/galform/millennium/
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動径密度分布
• 多数の銀河団で
   スタックし高S/N

• 標準ダークマター
   理論の予言分布
   (NFW profile) と
   高精度で一致
  (see also Okabe et al. 2010, 
     2013; Umetsu et al. 2014; 
     Niikura et al. 2015)
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中心集中度問題？
4 Steep Mass Profile of A1689

FIG. 3.— Reconstructed mass profile. The triangle and square symbols with error bars show the results from the ACS strong lensing analysis (B04) and
the Subaru weak lensing analysis (this work), respectively. The dashed and solid curves show the best-fitting NFW profiles for the ACS data alone and for
the combined ACS+Subaru profile, respectively. The best-fitting NFW profile for the ACS+Subaru profile has a high concentration, cvir = 13.7, and somewhat
overestimates the inner slope and is a bit shallow at large radius. A cored power-law provides a better fit to the full projected mass profile. The inset plot shows
the 68%, 95% and 99.7% confidence levels in the (cvir,Mvir) plane for the ACS+Subaru NFW fitting (∆χ2 = 2.3, 6.17 and 11.8).

ever, the mass distribution appears to be much more concen-
trated toward the center than the CDM simulations predict for
a halo of the above mass, cvir = 4.0 (Bullock et al. 2001). A
generalized NFW profile given by ρ ∝ r−1.5(1+ r/rs)−1.5 (e.g.,
Moore et al. 1998) is disfavored (χ2min/dof. = 28.3/20; see
Umetsu et al. 2004 for more details), being too steep in the
center. A cored power-law profile, κ ∝ (θ+ θc)−n, gives a bet-
ter fit: χ2min = 4.49/19 with a steep slope, n = 3.16+0.81−0.72, and a
core of θc = 1.65+0.77−0.61 arcmin (rc = 214+99−78 kpc/h). A softened
isothermal profile is strongly rejected (10σ level!).

6. DISCUSSION AND CONCLUSIONS
We have obtained a secure, model-independent mass pro-

file of A1689 over 1′ < θ <
∼ 20′ (100kpc/h <

∼ r <
∼ 2Mpc/h)

by combining the distortion and magnification-bias measure-
ments from high-quality Subaru imaging. We have seen that
to reliably measure distortions it is critically important to se-
curely select background galaxies in order to avoid dilution

of the distortion signal by blue cluster members and fore-
grounds (see Figure 1). Thus we have resolved the discrep-
ancy between the small Einstein radius (∼ 20′′) inferred from
the previous work based on largely monochromatic measure-
ments and the observed radius (∼ 45′′). The mass profile of
A1689 obtained from the Subaru and ACS data covers 2 or-
ders of magnitude in radius, [10−2,2]Mpc/h, and shows a con-
tinuously steepening profile with increasing radius, very sim-
ilar to an NFW profile but with a much higher concentration
than expected. The best-fitting NFW profile has cvir ≃ 14, sig-
nificantly larger than expected cvir ≃ 4, corresponding to the
profile expected for a much lower mass halo of ∼ 1011−12M⊙

(Bullock et al. 2001), 3-4 orders of magnitude less than the
mass of A1689. A higher concentration may imply a higher
than expected redshift for cluster formation, corresponding to
a greater mean cosmological mass density, so that collapsed
objects of a given mass have a higher internal density. A
higher redshift of cluster formation may also help account for

Broadhurst et al. (2005)

• 重い銀河団の
   重力レンズ解析

• 理論期待 c~4 に
   対し観測 c~13

• 観測の中心集中
   度高すぎ？
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FIG. 1.— Convergence profiles of the triaxial halo with the virial mass
Mvir = 1015h−1M⊙, the concentration parameter ce = 1.15, and the triaxial
axis ratios of a/c = 0.4 and b/c = 0.7. The halo is placed at zl = 0.3, and we
assume the source redshift of zs = 1.0. We consider the projection along each
of the three principal axes: from upper to lower the dashed lines show profiles
projected along z, y, and x (see eq. [1]), respectively. The convergence profile
of the corresponding spherical NFW halo is also plotted by the solid line
for comparison (see text for details). The vertical arrow indicates the virial
radius.

physical scale of 129h−1kpc for A1689 (redshift z = 0.18).

2. A SIMPLE ESTIMATION OF THE HALO TRIAXIALITY EFFECT
ON LENSING MEASUREMENTS

Before going to the analysis of A1689, we make a sim-
ple test to demonstrate how important the halo triaxiality is
in constraining mass profiles from a two-dimensional lensing
measurement. The analysis is somewhat similar to that done
by Clowe et al. (2004) who used high-resolution N-body sim-
ulations of massive clusters. Here we instead use an analytic
model of aspherical dark halos.
We consider a triaxial halo with the virial mass Mvir =

1015h−1M⊙
7, placed at zl = 0.3, and adopt the model mass

profile given in JS02:

ρ(R) = δceρcrit(z)
(R/R0)(1+R/R0)2

, (1)

R2 ≡ c2
(

x2

a2
+
y2

b2
+
z2

c2

)

(a≤ b≤ c). (2)

We adopt typical model parameters for a halo of 1015h−1M⊙:
the triaxial axis ratios are a/c = 0.4 and b/c = 0.7, and
the concentration parameter ce ≡ Re/R0, where Re is de-
fined such that the mean density enclosed within the ellip-
soid of the major axis radius Re is ∆eΩ(z)ρcrit(z) with ∆e =
5∆vir

(

c2/ab
)0.75, is chosen to be ce = 1.15. We have checked

that the spherically-averaged radial mass profile of the triaxial
halo is quite similar to the spherical NFW profile that is spec-
ified by the virial radius rvir = Re/0.45, as proposed in JS02,
and the concentration parameter cvir = 4. However, it is non-
trivial for these triaxial and spherical models whether to yield
7 The virial mass is defined by spherically averaging the halo mass dis-

tribution (the triaxial mass profile for our case) around the halo center and
then by finding the sphere inside which the mean overdensity reaches ∆vir
predicted in the top-hat spherical collapse model.

FIG. 2.— Constraint contours in the virial mass and halo concentration
parameter space, obtained by fitting the mock data of triaxial halos to the
spherical NFW halo model. The contours show 68%, 95%, 99.7% confidence
limits (corresponding to∆χ2 = 2.3,6.17 and 11.8, respectively). From left to
right, the constraint contours from the convergence profiles of the triaxial halo
projected along the principal axes x, y, and z (as in Figure 1), respectively,
are shown. For comparison, the square symbol shows the best-fitting model
for the convergence profile obtained by projecting the a priori spherically-
averaged mass profile of the input triaxial halo.

similar lensing maps as a result of the line-of-sight projec-
tion8. To make this clear, Figure 1 compares the circularly-
averaged convergence profiles for the spherical and triaxial
halos. For the triaxial halo, we consider the projection along
each of the three principal axes. It is clear that the surface
mass density of the triaxial halo depends strongly on the pro-
jection direction. Therefore it is quite likely that adopting a
spherical halo model causes a bias in estimating the mass and
profile parameters for an individual cluster in reality.
To see this more clearly, we perform the following test.

First, we generate an “observed” surface mass density pro-
file: We consider 20 bins logarithmically spacing over the
range r = [10−2,1]h−1Mpc, and generate the convergence pro-
file κ(r), where the mean value for each bin is taken from the
triaxial halo model and the Gaussian random error of stan-
dard deviation ∆(log10κ) = 0.1 is added to each bin. Then,
assuming the spherical NFW density profile, we constrain the
virial mass (Mvir) and halo concentration parameter (cvir) by
fitting the model predictions to the “observed” profile. The
constraint contours in theMvir −cvir plane are shown in Figure
2, demonstrating that the best-fit parameters depend strongly
on the projection direction. For example, the convergence
profile projected along the major (minor) axis yields a sig-
nificant overestimation (underestimation) by 20−30% in both
the mass and concentration parameters. It should be noted
that the bias direction is orthogonal to the degeneracy direc-
tion of the error ellipse, implying the systematics is very im-
portant. In fact, we fail to recover the model parameters of
the spherically-averaged triaxial profile at more than 3-σ level
when the halo is projected along the major- or minor-axis di-
8 The lensing convergence field κ(r) is given in terms of the surface mass

density Σ(r) as κ(r) ≡ Σ(r)/Σcr , where Σcr is the lensing critical density
specified for a background cosmology and lens and source redshifts (see
Schneider et al. 1992).

Oguri, Takada, Umetsu, Broadhurst ApJ 632(2005)841

• 重力レンズで推定する質量、中心集中度は見込む
   方向に強く依存 ➞ 多数の銀河団の解析が必須
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Table 3. Best-fit parameters for the mass concentration relation.

∆ c0 b σint

180m 8.84+4.04
−2.54 −0.18+0.14

−0.15 < 0.17

200m 8.42+3.72
−2.44 −0.18+0.14

−0.15 < 0.17

Virial 7.01+2.96
−1.99 −0.17+0.14

−0.15 < 0.18

200 4.97+2.12
−1.45 −0.13+0.16

−0.17 < 0.20

Figure 4. The observed distribution of the concentration param-
eters c200 as a function of the cluster masses M200 for 50 clusters.
The errors denote 68% confidence intervals. The thick and thin
lines (red) are the best-fit function and the errors, respectively.
The dashed blue, dotted green and dotted-dashed magenta lines
are the mean mass-concentration relation from recent numeri-
cal simulations of Bhattacharya et al. (2013), Diemer & Kravtsov
(2014) and Meneghetti et al. (2014) at zl = 0.23, respectively.

values of b. Adding less massive clusters and increasing the
number density of background galaxies will allow improved
constraints in future studies.

3.4 Stacked Lensing Analysis

Stacked lensing analysis is a powerful technique for mea-
suring the average density profile of a sample of clusters.
Stacking the shear signal from a sample of clusters aver-
ages over the distribution of internal structures and halo
triaxiality, and thus overcomes the structural biases suf-
fered by some individual cluster mass measurements (e.g.
Mandelbaum et al. 2006; Johnston et al. 2007; Okabe et al.
2010a, 2013; Umetsu et al. 2011, 2014; Oguri et al. 2012;
Leauthaud et al. 2012; Miyatake et al. 2013).

We compute the average lensing signal in physical
length unit centered on the respective BCGs. Note that our
redshift range is narrow, and therefore the results described
below are unchanged if we instead use comoving length

Figure 5. Stacked tangential shear profile for 50 clusters. The er-
rors are composed of (Cg,ii + C̃s,ii +CLSS,ii)1/2. Thick solid red
and dashed green lines are the total mass and the NFW model, re-
spectively. The dotted blue and dashed-dotted magenta lines are
the two-halo term and point source multiplied by 10, respectively.

units. Moreover, we have previously tested that adopting
physical length units, and not scaling length to an overden-
sity radius, yields an unbiased measurement of the stacked
shear profile of our sample (Okabe et al. 2013). The inner-
most radius of the stacked shear profile is that at which the
innermost bin of the stacked profile contains a minimum of
one background galaxy from each cluster. The outermost
radius of the stacked profile is the median of the maximum
physical scale on which the field of view of the Subaru ob-
servations fully encloses a circular aperture centred on each
BCG. Note that this simultaneously matches the angular
extent of the data, and satisfies the requirement placed on
the innermost radius. The stacked shear profile decreases
smoothly as a function of clustercentric radius (Figure 5),
and yields a signal-to-noise ratio of is S/N ≃ 35.6, after
taking into account the LSS covariance matrix, CLSS.

To interpret the average mass profile from the stacked
lensing signals, we consider three mass components,

∆Σmodel = ∆Σpt +∆ΣNFW +∆Σ2h, (30)

where ∆Σpt is a point mass associated with the BCGs,
∆ΣNFW is the large-scale cluster mass distribution that
we parametetrise following NFW, and ∆Σ2h is the two-
halo term (e.g. Johnston et al. 2007; Oguri & Takada 2011;
Oguri & Hamana 2011) to account for structure adjacent to
the clusters. Note that the latter two terms were ignored in
the modeling of individual clusters because the noise level
in individual cluster shear profiles renders them insensitive
to these contributions.

We describe the contribution from the point mass, of
mass Mpt, as:

∆Σpt =
Mpt

πr2
, (31)

c⃝ 2015 RAS, MNRAS 000, 1–27

LoCuSS (Okabe+ 2015)

多数の銀河団解析
で中心集中度の値
もΛCDM予言と
コンシステント

SGAS (Oguri+ 2012)
Combined strong and weak lensing analysis of 28 clusters 11

Figure 5. The mass-concentration relation obtained from com-
bined strong and weak lensing analysis. Filled triangles show our
results presented in this paper, whereas filled squares show re-
sults from literature; A1689, A370, CL0024, RXJ1347 (Umetsu
et al. 2011b), and A383 (Zitrin et al. 2011b). The black shaded
region indicates the predicted concentration parameters as a func-
tion of the halo mass with the lensing bias taken into account
(see Appendix A for details). The solid line is the best-fit mass-
concentration relation from fitting of our cluster sample (i.e., filled
triangles), with the 1σ range indicated by dotted lines.

Allen 2007; Buote et al. 2007; Ettori et al. 2010) analysis.
Our result suggests that the observed mass-concentration
relation is in reasonable agreement with the simulation re-
sults for very massive haloes of Mvir ∼ 1015h−1M⊙. The
agreement may be even better if we adopt recent results
of N-body simulations by Prada et al. (2011), who argued
that previous simulation work underestimated the mean
concentrations at high mass end (see also Appendix A).
In contrast, we find that observed concentrations are much
higher than theoretical expectations for less massive haloes
of Mvir ∼ 1014h−1M⊙, even if we take account of the mass
dependence of the lensing bias.

There are a few possible explanations for the excess
concentration for small mass clusters. Perhaps the most sig-
nificant effect is baryon cooling. The formation of the central
galaxy, and the accompanying adiabatic contraction of dark
matter distribution, enhances the core density of the clus-
ter and increases the concentration parameter value for the
total mass distribution. This effect is expected to be mass
dependent such that lower mass haloes are affected more
pronouncedly, simply because the fraction of the mass of
the central galaxy to the total mass is larger for smaller
halo masses. Indeed, simulations with radiative cooling and
star formation indicate that the concentration can be signifi-
cantly enhanced by baryon physics particularly for low-mass
haloes (e.g., Rudd, Zentner, & Kravtsov 2008; Mead et al.
2010). Thus baryon cooling appears to be able to explain
the observed strong mass dependence at least qualitatively,
although more quantitative estimates of this effect need to
be made using a large sample of simulated clusters with the
baryon physics included.

5 STACKING ANALYSIS

5.1 Stacked tangential shear profile

We can study the average properties of a given sample by
stacking lensing signals. This stacked lensing analysis has
been successful for constraining mean dark matter distri-
butions of cluster samples (e.g., Mandelbaum et al. 2006b;
Johnston et al. 2007; Leauthaud et al. 2010; Okabe et al.
2010). Here we conduct stacking analysis of the tangential
shear profile for our lensing sample for studying the mass-
concentration relation from another viewpoint. Note that
the off-centreing effect, which has been known to be one
of the most significant systematic errors in stacked lensing
analysis (e.g., Johnston et al. 2007; Mandelbaum, Seljak, &
Hirata 2008; Oguri & Takada 2011), should be negligible for
our analysis, because of the detection of weak lensing signals
for individual clusters and the presence of giant arcs which
assure that selected centres (positions of the brightest galax-
ies in the strong lensing region) indeed correspond to that
of the mass distribution.

We perform stacking in the physical length scale. Specif-
ically, we compute the differential surface density ∆Σ+(r)
which is define by

∆Σ+(r) ≡ Σcrg+(θ = r/Dol), (27)

where Σcr is the critical surface mass density for lens-
ing. We stack ∆Σ+(r) for different clusters to obtain the
average differential surface density. We do not include
SDSSJ1226+2149 and SDSSJ1226+2152 in our stacking
analysis, because these fields clearly have complicated mass
distributions with two strong lensing cores separated by only
∼ 3′. Furthermore, we exclude SDSSJ1110+6459 as well be-
cause the two-dimensional weak lensing map suggests the
presence of a very complicated mass distribution around the
system. We use the remaining 25 clusters for our stacked
lensing analysis.

It should be noted that the reduced shear g+ has a non-
linear dependence on the mass profile. In fact, the reduced
shear is defined by g+ ≡ γ+/(1 − κ), where γ+ and κ are
tangential shear and convergence. Thus, the quantity defined
by equation (27) still depends slightly on the source redshift
via the factor 1/(1 − κ), particularly near the halo centre.
Thus, in comparison with the NFW predictions, we assume
the source redshift of zs = 1.1, which is the typical effective
source redshift for our weak lensing analysis (see Table 3).
Also the non-linear dependence makes it somewhat difficult
to interpret the average profile, and hence our stacked tan-
gential profile measurement near the centre should be taken
with caution.

It is known that the matter fluctuations along the line-
of-sight contributes to the total error budget (e.g., Hoek-
stra 2003; Hoekstra et al. 2011; Dodelson 2004; Gruen et
al. 2011). While we have ignored this effect for the anal-
ysis of individual clusters presented in Section 4, here we
take into account the error from the large scale structure in
fitting the stacked tangential shear profile by including the
full covariance between different radial bins (see Oguri &
Takada 2011; Umetsu et al. 2011b, for the calculation of the
covariance matrix). We, however, comment that the error of
the large scale structure is subdominant in our analysis, be-
cause of the relatively small number density of background
galaxies after the colour cut (see also Oguri et al. 2010).

c⃝ RAS, MNRAS 000, 1–21
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Figure 6. Upper panel: Concentration–mass relation for the CLASH X-ray-selected subsample of 16 clusters derived from a joint analysis of HST and Subaru
lensing data sets. The black squares with error bars represent the measured parameters and their 1� uncertainties for individual clusters. The gray shaded region
shows the 1� confidence region of the CLASH c–M relation (z = 0.34) from our Bayesian regression. The blue triangle shows the best-fit parameters from a
halo-model fit (NFW+LSS (i) in Table 4) to the ensemble-averaged surface mass density profile, hh⌃ii (Figure 3). The yellow contours represent the 1� and 2�
confidence regions determined from the stacked shear-only analysis of the same sample (Umetsu et al. 2014). The cyan-shaded band shows the 1� uncertainty
on the CLASH c–M relation obtained by Merten et al. (2015). The red-solid line represents the theoretical expectation from numerical simulations accounting
for the projection effects and the CLASH selection function based on X-ray morphology (Meneghetti et al. 2014). The red-dashed and red-dotted lines show
the intrinsic three-dimensional c–M relations for the relaxed and full populations, respectively (Meneghetti et al. 2014). The lower panel shows, for each case,
the ratio between the measured concentration and the predicted value using the c(M, z) relation for the CLASH X-ray-selected population (red-solid line in the
upper panel).

(2015). In all cases, the cluster masses are measured assum-
ing a spherical NFW halo (Section 4.2). The WtG and Lo-
CuSS mass measurements are based on weak-lensing obser-
vations with Subaru/Suprime-Cam, whilst the CCCP survey
uses weak-lensing data taken with the 3.6 m Canada–France–
Hawaii Telescope (CFHT).

In the following, we compare cluster masses between two
studies by using the same aperture radii to avoid aperture mis-
match problems. These comparisons are limited to those over-
density radii (r�) where the fitting ranges typically overlap.
The results of the comparisons are shown in Figure 8. For
each case, we calculate the mass ratios for the overlap sample
using the unweighted geometric mean (Section 7.1), unless
otherwise noted.

7.2.1. CLASH: Merten et al. (2015)

There are 16 clusters in common with the CLASH
SAWLENS analysis of Merten et al. (2015). These are all
CLASH X-ray-selected clusters. Merten et al. (2015) mea-
sure masses by reconstructing two-dimensional convergence
maps of individual clusters, binning the maps into ⌃ pro-
files, and fitting these profiles with an NFW model within
2Mpch�1 (R <⇠ rvir), closely following the procedure sug-
gested by Meneghetti et al. (2014). An important difference
between the data used by Merten et al. (2015) and the data
used here is the availability of azimuthally-integrated magni-

fication constraints (Umetsu et al. 2014).24

The comparison in Figure 8 shows that, on average, the
SAWLENS masses are 7% ± 6% lower than our masses at
�c = �vir, 200, and 500; their masses are 9% ± 11% lower
than our masses at �c = 2500. The differences are nearly
independent of overdensity and not statistically significant
( <⇠ 1�). We note that this agreement is achieved in spite
of using substantially different reconstruction methods even
though the data used are largely common to the two analyses.

7.2.2. The Weighing the Giants Project

The Weighing the Giants (WtG) collaboration conducted
weak-lensing shear mass measurements for 51 X-ray-
luminous clusters at 0.15 <⇠ z <⇠ 0.7 using deep multi-color
Subaru/Suprime-Cam and CFHT/MegaPrime optical imaging
(Applegate et al. 2014). Their cluster sample includes the
majority of the CLASH clusters. There are 17 clusters in
common between the two studies, both of which use Subaru
data. The overlap sample includes 14 CLASH X-ray-selected
clusters and 3 high-magnification clusters. Applegate et al.
(2014) derived cluster masses from NFW fits to tangential

24 Merten et al. (2015) and Zitrin et al. (2015) use identical sets of HST
lensing constraints (i.e., HST shear catalogs plus locations and redshifts of
multiple images) as input for respective mass reconstructions. Merten et al.
(2015) simultaneously combine the HST lensing constraints and ground-
based shear catalogs of Umetsu et al. (2014). In this work, lensing constraints
are combined a posteriori in the form of radial profiles according to the pro-
cedure described in Section 3.5.

CLASH (Umetsu+ 2015)
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by

wi = 1
a2 + σ 2

g(i)
, (2)

with a = 0.4 and σg(i) being the uncertainty of shape measurement
for each galaxy (see Okabe et al. 2010). As stated above, the dom-
inant source of distortion measurement error is the intrinsic galaxy
shape. The shape noise in each pixel is estimated as

σ 2
g (θ l) = 1

2

⎡

⎣
∑

θ i∈θ l

w2
i σ

2
g(i)

⎤

⎦

⎡

⎣
∑

θ i∈θ l

wi

⎤

⎦
−2

. (3)

For all the clusters, we adopt a grid size of 1×1 arcmin2 (we tried
smaller grid sizes and found that the results are almost unchanged;
see also Appendix A). We do not use four innermost grids (2 × 2
arcmin2 box) for the fitting, because source galaxies are obscured
by dense distribution of cluster member galaxies especially in the
central region, and also because our assumption of single source
redshift may become inaccurate near the cluster centre due to the
fewer sampling of source galaxies. Moreover, the weak-lensing ap-
proximation breaks down near the cluster centre. Although the field
of view of Subaru/Suprime-cam is 34 × 27 arcmin2, we conduct
our fitting only in a 20 × 20 arcmin2 region (20 arcmin corre-
sponds to physical transverse sizes of 2.2 h−1 Mpc for z = 0.15 and
3.8 h−1 Mpc for z = 0.3, respectively) centred at the BCG, which
roughly corresponds to virial radii of clusters in our sample, in order
to reduce the projection effect, i.e. the effect of different structures
along the same line of sight, which is more prominent in the bound-
ary region where the cluster lensing signal is very weak. However,
it should be noted that this restriction of the fitting region affects a
little the final results, as we will discuss later in more detail. Thus,
the total number of girds used for the fitting is Npixel = 396. An
example of our weak-lensing shear map is given in the left panel of
Fig. 1.

For the range of angular scales we use for the fitting, the measured
distortion field is nearly the shear field, gα ≃ γα , which we will
simply assume in the following analysis.

2.3 Cluster mass model

We assume that the cluster mass distribution can be described by
a single halo component with its radial profile being a so-called
Navarro–Frenk–White (NFW) density profile (Navarro et al. 1996,
1997). The spherical NFW model is fully specified by two param-
eters, the halo concentration and mass parameters. Although the
density profile was obtained from N-body simulation by spherically
averaging the halo mass distribution, we can construct an elliptical
lens model simply by introducing an ellipticity in the isodensity
contour. Specifically, we adopt the following mass model in our
analysis:

κ(x, y) = κsph(ζ ), (4)

ζ 2 = x ′2

1 − e
+ (1 − e)y ′2, (5)

x ′ = x cos θe + y sin θe, (6)

y ′ = −x sin θe + y cos θe, (7)

where κsph(r) is the radial convergence profile for the spherical
NFW profile (e.g. Bartelmann 1996). Here the coordinate origin is
taken as the halo centre (xc, yc). The halo ellipticity e is related to
the major (a) and minor (b) axes lengths of the isodensity contour
as e = 1 − b/a. Throughout the paper, we adopt the coordinate
system with the x- and y-axes being aligned with west and north,
respectively. With this coordinate system, the position angle θe is
measured east of north. The lensing shear is computed by solving the
2D Poisson equation whose source term is given by the convergence
κ(x, y), as described in Schramm (1990). We note that this elliptical
model includes a triaxial halo model which better describes haloes in
N-body simulations than the spherical model (Jing & Suto 2002;
Kasun & Evrard 2005; Allgood et al. 2006), because the conver-
gence map of a triaxial halo has elliptical isodensity contours when
projected along arbitrary directions (Oguri, Lee & Suto 2003; Oguri
& Keeton 2004).

Figure 1. Left panel: an example of our weak-lensing measurement for A2390. The size of each panel is 12 × 12 arcmin2. The stick in each 1 × 1 arcmin2

pixel shows the distortion field estimated from background galaxy images contained within the pixel, where a background galaxy image is deformed along
the stick direction, and the length is proportional to the shear amplitude. The shear field in this panel is smoothed with a Gaussian with the full width at
half-maximum of ≃1.6 arcmin for illustrative purpose. Overplotted is the surface mass density map reconstructed from the weak-lensing shear measurement
(see Okabe et al. 2010). North is up and east is left. Right panel: the shear field predicted by our best-fitting elliptical NFW model (see also Fig. 2 and Table 1),
while the contours are the isodensity map. The best-fitting ellipticity of the projected mass density is e ≡ 1 − b/a = 0.598.
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二次元密度分布の非対称性
Oguri, Takada, Okabe, Smith MNRAS 405(2010)2215

• 密度分布の非球対称性
   を直接検証

• 観測された平均楕円率 
   ⟨e⟩ = 0.46 ± 0.04 は冷たい
   無衝突ダークマターの
   予言と非常によく一致
   (see also Evans & Bridle 2009;
      Oguri et al. 2012;  Clampitt &
      Jain 2016; van Uitert et al. 2016)

Measurement of dark matter halo ellipticity 2221

Figure 3. Top panel: the distribution of the halo ellipticity e for 18 clusters.
Note that the ellipticity is for the projected mass density (see equation 4).
The open squares with error bars show the observed distribution estimated
from 10 000 Monte Carlo redistributions of the ellipticity parameters based
on the posterior likelihood function of ellipticity for each cluster, where the
error bars in each ellipticity bin denote the range including the 68 percentile
of 10 000 realizations. Note that different bins are not independent but are
correlated with each other. The solid curve is the theoretically expected dis-
tribution of ellipticity based on a triaxial halo model of Jing & Suto (2002),
computed adopting the cluster redshift of 0.23 and mass of 7×1014 h−1 M⊙
(median redshift and mass for our cluster sample) and convolved with the
Gaussian with σ = 0.15 which corresponds to a typical measurement uncer-
tainty for our 2D shear fitting. The dotted curve shows the original theoretical
prediction without the Gaussian convolution. Bottom panel: the probability
distribution of the mean ellipticity ⟨e⟩ for the 18 clusters. The vertical solid
and dotted lines indicate the mean ellipticity expected from the triaxial halo
model, with and without the Gaussian smoothing, respectively.

note that, if we project the 3D triaxial model along the line of sight,
then the resulting mass distribution on the sky is exactly the same as
that given in equation (4). Jing & Suto (2002) derived the probability
distribution function of triaxial halo shapes (axis ratios) as a func-
tion of halo mass and cosmological models. Thus, the theoretical
prediction for the halo ellipticity distribution of 2D mass density can
be computed by projecting the triaxial halo model along arbitrary
line-of-sight directions as described in detail in Oguri et al. (2003).
It should be noted that the theoretical distribution rests on the im-
plicit assumption that the cluster sample is unbiased in terms of
both the shape and orientation. In the calculation, the concordance

"CDM model is assumed, and the mass and redshift are fixed to
the median mass and redshift of our cluster sample: z = 0.23 and
Mvir = 7 × 1014 h−1 M⊙, respectively.

The plot shows both observed and theoretical distribution peaks
at e ∼ 0.4–0.5, but the observed distribution is significantly wider
than the theoretical distribution. Apparently, this is because of the
measurement uncertainty which broadens the distribution. Thus, a
correction to the theoretical prediction is required to account for
the measurement uncertainty. The solid curve shows the theoretical
distribution convolved with the Gaussian function with width σ =
0.15, which corresponds to the typical uncertainty of the ellipticity
measurement for our 2D shear fitting (see Table 1). Indeed, we find
that the Gaussian-smoothed theoretical distribution better matches
the observed distribution.

While the detection of non-zero halo ellipticity may be obvi-
ous from the distribution in Fig. 3, we can quantify how well the
elliptical model improves a fit to the 2D shear map compared to
the spherical model by monitoring the χ 2 values in equation (9).
The elliptical model improves the total χ 2 value for 18 clusters by
$χ 2 = 51 compared with the spherical model with e = 0 fitted to
the same 2D data, thereby representing the detection of an ellipticity
at 7σ confidence level.

In the bottom panel of Fig. 3, the mean halo ellipticity, ⟨e⟩, for our
sample of 18 clusters is compared with the theoretical prediction,
where the width of the mean ellipticity distribution reflects the
scatter among 10 000 realizations. The observed distribution has
the mean ellipticity of ⟨e⟩ = 0.46 ± 0.04 (1σ ) which is in excellent
agreement with the triaxial model prediction, ⟨e⟩ = 0.42 (0.41)
with (without) the Gaussian smoothing.

The halo ellipticity depends on mass and redshift of clusters as
well as on cosmological models. According to the CDM hierarchi-
cal structure formation scenario (Jing & Suto 2002), dynamically
young haloes tend to have a more elongated shape at a given ob-
served redshift. In other words, more massive haloes that have just
recently formed tend to have a larger halo ellipticity. Fig. 4 shows
how the theoretically expected distribution of halo ellipticity de-
pends on redshift and mass of haloes and one of the cosmological
parameters, σ8, the normalization of primordial density fluctuations.
While the current measurement is not enough to discriminate the
model differences due to a limited sample size, the figure illus-
trates how measurements of halo ellipticities can potentially test the
structure formation model.

3.3 Offset between lensing centre and BCG

In this section, we compare the positions of cluster centres inferred
from weak lensing and from the BCG(s). Weak lensing provides
a unique method to determine the centre position of dark matter
distribution and therefore is quite complementary to the optical
(BCGs) and X-ray-based methods. It should also be noted that a
possible uncertainty in the centre position determination is currently
one of the most important systematic sources in the stacked lensing
analysis, cluster-background galaxy cross-correlation measurement
(Johnston et al. 2007; Mandelbaum et al. 2010).

Our basic result, summarized in Table 1, is that the mass centres
tend to be consistent with the locations of the BCGs. We find that
mass centres are consistent with the BCG within 2σ level for most
of the clusters. However, a possible significant deviation between
the lensing and BCG centre positions is apparent for some of the
clusters.

In the following, we explore a possible signature of the large
offset between the BCG position and lensing centre in more detail.

C⃝ 2010 The Authors. Journal compilation C⃝ 2010 RAS, MNRAS 405, 2215–2230



ダークマターは無衝突か？

Bullet cluster (Clowe et al. 2006)

青: DM
赤: ガス



統計的解析
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• 一つ (少数) の解析では初期条件の不定性など
   で強い制限を得るのはなかなか難しい

• メインハローの落ち込むサブハローを利用
   することで大きなサンプルを構築できる
    (e.g., Massey et al. 2011)

• 銀河 (星)、ガス、DMの
   相対位置の分布から
   衝突断面積を制限する
   (無衝突 ➞ 〈d〉=0)

銀河
DM

ガス
d



ダークマター衝突断面積
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Figure 2: Observed configurations of the three components in the 30 systems studied. The
background shows the HST image, with contours showing the distribution of galaxies (green),
gas (red) and total mass, which is dominated by dark matter (blue).
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銀河 ガス ダークマター

Harvey et al. Science 347(2015)1462

• 30個の銀河団内の銀河 
   (可視), ガス (X線), ダーク
   マター(重力レンズ) 分布
   の系統的な調査

• ダークマターが無衝突で
   あれば星の位置と一致



ダークマター衝突断面積
Harvey et al. Science 347(2015)1462

• 星とダーマターのずれの
   制限から断面積を制限
    σDM/m < 0.47cm2/g (95%)
    (see also Randall et al. 2008; 
　　Bradac et al. 2008; ... )

Observed offset between various components of substructure [kpc]
-200 -100 0 100 200 300 400

20B

15A

 δ
(galaxies-gas)

 δ   
(galaxies-dark matter)

 δ
(gas-dark matter)

GI

SI

GI

Figure 3: Observed offsets between the three components of 72 pieces of substructure. Offsets
�SI and �GI include corrections accounting for the fact that gravitational lensing measures the
total mass, not just that of dark matter. (A) The observed offset between gas and mass, in the
direction of motion. The smooth curve shows the distribution expected if dark matter does not
exist; this hypothesis is inconsistent with the data at 7.6� statistical significance. (B) Observed
offsets from galaxies to other components. The fractional offset of dark matter towards the gas,
�SI/�SG, is used to measure the drag force acting on the dark matter.
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Figure 4: Constraints on the self-interaction cross-section of dark matter. These are derived
from the separations � = �SI/�SG, assuming a dynamical model to compare the forces acting
on dark matter and standard model particles (28). The hatched region denotes 68% confidence
limits, to be compared to the 68% confidence upper limits from previous studies of the most
constraining individual clusters in blue. Note that the tightest previous constraint is derived
from a measurement of dark matter mass loss, which is sensitive to short range self-interaction
forces; all other constraints are measurements of a drag force acting on dark matter, caused by
long range self-interactions.
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銀河団質量分布: まとめ
• 重力レンズを用い銀河団内のダークマター分布
   を直接、精密に測定できるようになってきた

• 無衝突ΛCDMモデルで予言される動径密度分布
   や非球対称性などが観測と非常に良く一致する
   ことが明らかになってきている

• この一致は決して自明ではなく、驚くべきこと
   である



密度揺らぎ問題？

Planck Collaboration: Cosmology from SZ cluster counts
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Fig. 7. Distribution in redshift for the Planck cosmological clus-
ter sample. The observed number counts (red), are compared to
our best-fit model prediction (blue). The dashed and dot-dashed
histograms are the best-fit models from the Planck SZ power
spectrum and Planck CMB power spectrum fits, respectively.
The cyan long dashed histogram is the best fit CMB+SZ when
the bias is free (see Section 6.3). The uncertainties on the ob-
served counts, shown for illustration only, are the standard devi-
ation based on the observed counts, except for empty bins where
we show the inferred 84% upper limit on the predicted counts
assuming a Poissonian distribution. See Sect. 6 for more discus-
sion.

Fig. 8. Comparison of the constraints using the mass functions
of Watson et al. (black) and Tinker et al. (red), with b fixed to
0.8. When relaxing the constraints on the evolution of the scaling
law with redshift (blue), the contours move along the degeneracy
line. Allowing the bias to vary uniformly in the range [0.7, 1.0]
enlarges the constraints perpendicular to the �8–⌦m degeneracy
line due to the degeneracy of the number of clusters with the
mass bias (purple). Contours are 95% confidence levels here.

Fig. 9. 95% contours for different robustness tests: MMF3 with
S/N cut > 7 in red; MMF3 with S/N cut > 8 in blue; and MMF1
with S/N cut > 7 in black; and MMF3with S/N cut at 7 but adopt-
ing the MC completeness in purple.

0.037 for a spatially-flat model. They break the degeneracy be-
tween �8 and ⌦m by incorporating primary CMB constraints,
deducing that �8 = 0.795 ± 0.016 and ⌦m = 0.255 ± 0.016.
In addition, they find that the dark energy equation of state
is constrained to w = �1.09 ± 0.36, using just their clus-
ter sample along with the same HST and BBN constraints
used here. Subsequently, Reichardt et al. (2013) reported a much
larger cluster sample and used this to improve on the statisti-
cal uncertainties on the cosmological parameters (see Table 3).
Hasselfield et al. (2013) use a sample of 15 high S/N clusters
from ACT, in combination with primary CMB data, to find
�8 = 0.786 ± 0.013 and ⌦m = 0.250 ± 0.012 when assuming
a scaling law derived from the universal pressure profile.

Strong constraints on cosmological parameters have been
inferred from X-ray and optical richness selected samples.
Vikhlinin et al. (2009b) used a sample of 86 well-studied X-
ray clusters, split into low- and high-redshift bins, to conclude
that ⌦⇤ > 0 with a significance about 5� and that w =
�1.14 ± 0.21. Rozo et al. (2010) used the approximately 104

clusters in the Sloan Digital Sky Survey (SDSS) MaxBCG clus-
ter sample, which are detected using a colour–magnitude tech-
nique and characterized by optical richness. They found that
�8(⌦m/0.25)0.41 = 0.832 ± 0.033. The fact that this uncertainty
is similar to those quoted above for much smaller cluster sam-
ples signifies, once again, that cluster cosmology constraints are
now limited by modelling, rather than statistical, uncertainties.

Table 3 and Fig. 10 show some current constraints on the
combination �8(⌦m/0.27)0.3, which is the main degeneracy line
in cluster constraints. This comparison is only meant to be
indicative, as a more quantitative comparison would require
full consideration of modelling details which is beyond the
scope of this work. Cosmic shear (Kilbinger et al. 2013), X-
rays (Vikhlinin et al. 2009b), and MaxBCG (Rozo et al. 2010)
each have a different slope in ⌦m, being 0.6, 0.47, and 0.41, re-
spectively (instead of 0.3), as they are probing different redshift
ranges. We have rescaled when necessary the best value and er-
rors to quote numbers with a pivot ⌦m = 0.27. Hasselfield et al.
(2013) have derived ‘cluster-only’ constraints from ACT by
adopting several different scaling laws, shown in blue and
dashed blue in Fig. 10. The constraint assuming the univer-
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(Planck 2013)

観測された銀河団 
(SZ) カウント

プランク宇宙論パラメータ
から期待されるカウント• プランク衛星のCMB

   観測から現在の宇宙の
   物質量 (Ωm) や密度揺
   らぎ (σ8) を推定可能

• CMBから予想される
   銀河団数に比べて
   実際に観測される
   銀河団の数がかなり
   少ない？



密度揺らぎの進化
• CMBからの予想はz=1090
   からz~0への外挿である
   ことに注意

• 密度揺らぎの「矛盾」は
   z=1090からz=0の進化に
   非標準的な何かが起こっ
   ていることで説明可
   − ダークエネルギー
   − 修正重力
   − ニュートリノ質量

Chapter 9: Cosmology with Gravitational Lensing

Figure 9.1: The growth rate D(a) ∝ ag(a) for different cosmological models. Left: The growth rate for three
different dark energy equation of state w. The larger value of w indicates more dark energy in the past, leading
to more suppression of the growth rate. Right: An example of the growth rate for the modified gravity model (the
so-called f(R) model, see e.g., Narikawa & Yamamoto 2010). In modified gravity models, the growth rate can be
significantly different from the case of general relativity, even if the expansion history of the universe is similar, and
can be scale-dependent (kc is the Compton wavelength scale).

of various observable distances, is given as

χ(z) ≡

∫ z

0

dz′

H0

[

Ωm(1 + z′)3 + ΩK(1 + z′)2 + Ωdee
3
∫ z′

0
dz′′[1+w(z′′)]/(1+z′′)

]−1/2

, (9.1)

where H0(= 100h km/s/Mpc) is the Hubble parameter, Ωm, ΩK, and Ωde are the energy density
parameters of matter, curvature, and dark energy today, respectively, and w(z) is the dark energy
equation of state:

w(z) ≡
p̄de
ρ̄de

. (9.2)

The dark energy equation of state w(z) is a key parameter for distinguishing between various
dark energy models, and therefore plays a central role in cosmological analysis as presented in this
Chapter.

Dark energy that has negative pressure leads to repulsive gravity, and therefore does not cluster
significantly. However, dark energy does affect the growth of mass clustering through its effect on
the expansion rate. In linear theory, all Fourier modes of the mass density perturbation, δm, grow
at the same rate: δm(a) ∝ ag(a), where g(a) is the growth suppression rate. The growth factor can

be computed by solving the linearized differential equation, ¨̃δk + 2(ȧ/a) ˙̃δk − 4πGρ̄mδ̃k = 0, where
δ̃ is the Fourier transform of the density perturbation and the dot is the derivative with respect to
physical time. Hence, the growth suppression rate g(a) can be obtained by solving the differential
equation (e.g., Komatsu et al. 2009):

d2g

d ln a2
+

[

5

2
+

1

2
ΩK(a)−

3

2
w(a)Ωde(a)

]

dg

d ln a
+

[

2ΩK(a) +
3

2
(1− w(a))Ωde(a)

]

g = 0, (9.3)
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あるいは系統誤差？
• 伝統的な手法：X線観測から静水圧平衡を仮定
   し質量を推定

• 非熱的な圧力の寄与 (e.g., 乱流) ？
熱的 非熱的

➞ MHSE (<r)

➞ Mtrue (<r)

[過小評価]



Mtrue = (1� b)MHSE

系統誤差を考慮した解析
• 非熱的な圧力の寄与をパラメータbに押し込める

➞ 重力レンズ ➞ X線、SZ

• X線、SZ銀河団を重力レンズで観測し (1-b) を
  決定する



Planck 2015 results
Planck Collaboration: Cosmology from SZ cluster counts

Fig. 6: Redshift distribution of best-fit models from the four
analysis cases shown in Fig. 5. The observed counts in the
MMF3 catalogue (q > 6) are plotted as the red points with error
bars, and as in Fig. 5 we adopt the CCCP mass prior with the
SZ+BAO+BBN data set.

Fig. 7: Comparison of constraints from the CMB to those from
the cluster counts in the (⌦m,�8)-plane. The green, blue and
violet contours give the cluster constraints (two-dimensional
likelihood) at 1 and 2� for the WtG, CCCP, and CMB lens-
ing mass calibrations, respectively, as listed in Table 2. These
constraints are obtained from the MMF3 catalogue with the
SZ+BAO+BBN data set and ↵ free. Constraints from the Planck
TT, TE, EE+lowP CMB likelihood (hereafter, Planck primary
CMB) are shown as the dashed contours enclosing 1 and 2� con-
fidence regions (Planck Collaboration XIII 2015), while the grey
shaded region also include BAO. The red contours give results
from a joint analysis of the cluster counts, primary CMB and
the Planck lensing power spectrum (Planck Collaboration XV
2015), leaving the mass bias parameter free and ↵ constrained
by the X-ray prior.

with its uncertainty range extending even lower, the tension with
primary CMB is greatly reduced, as pointed out by von der Lin-
den et al. (2014b). With similar uncertainty but a central value
shifted to 1 � b = 0.78, the CCCP mass prior results in greater
tension with the primary CMB. The lensing mass prior, finally,
implies little bias and hence much greater tension.

Fig. 8: Comparison of cluster and primary CMB constraints in
the base ⇤CDM model expressed in terms of the mass bias,
1 � b. The solid black curve shows the distribution of values re-
quired to reconcile the counts and primary CMB in ⇤CDM; it
is found as the posterior on the 1 � b from a joint analysis of
the Planck cluster counts and primary CMB when leaving the
mass bias free. The coloured dashed curves show the three prior
distributions on the mass bias listed in Tab. 2.

6.4. Joint Planck 2014 primary CMB and cluster constraints

We now turn to a joint analysis of the cluster counts and primary
CMB. We begin by finding the mass bias required to remove ten-
sion with the primary CMB, and then consider one-parameter
extensions to the base ⇤CDM model, varying the curvature, the
Thomson optical depth to reionization, the dark energy equation-
of-state, and the neutrino mass scale. Unless otherwise stated,
"CMB" in the following means Planck TT, TE, EE+lowP as de-
fined in Planck Collaboration XIII (2015). All intervals are 68%
confidence and all upper/lower limits are 95%.

6.4.1. Mass bias required by CMB

In Fig. 8 we compare the three prior distributions to the mass
bias required by the primary CMB. The latter is obtained as the
posterior on (1 � b) from a joint analysis of the MMF3 cluster
counts and the CMB with the mass bias as a free parameter. The
best-fit value in this case is (1 � b) = 0.58 ± 0.04, more than 1�
below the central WtG value. Perfect agreement with the primary
CMB would imply that clusters are even more massive than the
WtG calibration. This figure most clearly quantifies the tension
between the Planck cluster counts and primary CMB.

6.4.2. Curvature

By itself the CMB only poorly determines the spatial curvature
(Sect. 6.2.4 of Planck Collaboration XIII 2015), but by including
another astrophysical observation, such as cluster counts, it can
be tightly constrained. Our joint cluster and CMB analysis, with-
out external data, yields ⌦k = �0.012 ± 0.008, consistent with
the constraint from Planck CMB and BAO ⌦k = 0.000 ± 0.002.

6.4.3. Reionization optical depth

Primary CMB temperature anisotropies also provide a precise
measurement of the parameter combination Ase�2⌧, where ⌧ is
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Fig. 6: Redshift distribution of best-fit models from the four
analysis cases shown in Fig. 5. The observed counts in the
MMF3 catalogue (q > 6) are plotted as the red points with error
bars, and as in Fig. 5 we adopt the CCCP mass prior with the
SZ+BAO+BBN data set.
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the cluster counts in the (⌦m,�8)-plane. The green, blue and
violet contours give the cluster constraints (two-dimensional
likelihood) at 1 and 2� for the WtG, CCCP, and CMB lens-
ing mass calibrations, respectively, as listed in Table 2. These
constraints are obtained from the MMF3 catalogue with the
SZ+BAO+BBN data set and ↵ free. Constraints from the Planck
TT, TE, EE+lowP CMB likelihood (hereafter, Planck primary
CMB) are shown as the dashed contours enclosing 1 and 2� con-
fidence regions (Planck Collaboration XIII 2015), while the grey
shaded region also include BAO. The red contours give results
from a joint analysis of the cluster counts, primary CMB and
the Planck lensing power spectrum (Planck Collaboration XV
2015), leaving the mass bias parameter free and ↵ constrained
by the X-ray prior.

with its uncertainty range extending even lower, the tension with
primary CMB is greatly reduced, as pointed out by von der Lin-
den et al. (2014b). With similar uncertainty but a central value
shifted to 1 � b = 0.78, the CCCP mass prior results in greater
tension with the primary CMB. The lensing mass prior, finally,
implies little bias and hence much greater tension.

Fig. 8: Comparison of cluster and primary CMB constraints in
the base ⇤CDM model expressed in terms of the mass bias,
1 � b. The solid black curve shows the distribution of values re-
quired to reconcile the counts and primary CMB in ⇤CDM; it
is found as the posterior on the 1 � b from a joint analysis of
the Planck cluster counts and primary CMB when leaving the
mass bias free. The coloured dashed curves show the three prior
distributions on the mass bias listed in Tab. 2.

6.4. Joint Planck 2014 primary CMB and cluster constraints

We now turn to a joint analysis of the cluster counts and primary
CMB. We begin by finding the mass bias required to remove ten-
sion with the primary CMB, and then consider one-parameter
extensions to the base ⇤CDM model, varying the curvature, the
Thomson optical depth to reionization, the dark energy equation-
of-state, and the neutrino mass scale. Unless otherwise stated,
"CMB" in the following means Planck TT, TE, EE+lowP as de-
fined in Planck Collaboration XIII (2015). All intervals are 68%
confidence and all upper/lower limits are 95%.

6.4.1. Mass bias required by CMB

In Fig. 8 we compare the three prior distributions to the mass
bias required by the primary CMB. The latter is obtained as the
posterior on (1 � b) from a joint analysis of the MMF3 cluster
counts and the CMB with the mass bias as a free parameter. The
best-fit value in this case is (1 � b) = 0.58 ± 0.04, more than 1�
below the central WtG value. Perfect agreement with the primary
CMB would imply that clusters are even more massive than the
WtG calibration. This figure most clearly quantifies the tension
between the Planck cluster counts and primary CMB.

6.4.2. Curvature

By itself the CMB only poorly determines the spatial curvature
(Sect. 6.2.4 of Planck Collaboration XIII 2015), but by including
another astrophysical observation, such as cluster counts, it can
be tightly constrained. Our joint cluster and CMB analysis, with-
out external data, yields ⌦k = �0.012 ± 0.008, consistent with
the constraint from Planck CMB and BAO ⌦k = 0.000 ± 0.002.

6.4.3. Reionization optical depth

Primary CMB temperature anisotropies also provide a precise
measurement of the parameter combination Ase�2⌧, where ⌧ is
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• 幾つかの重力レンズ観測から得られた (1-b) を
   priorに入れてSZ銀河団からσ8を制限

• 違う重力レンズ観測が割とinconsistent (？)



食い違いの原因
• 重力レンズの系統誤差？
   − 銀河団メンバ銀河のコンタミ
   − 背景銀河の測光赤方偏移 (photo-z)
   − 使うモデルの仮定 (e.g., 中心集中度)

• これまでの解析は個々の銀河団のfollow-up
   − すくないバンド数
   − 非一様なデータ
 → 今後の大規模サーベイで改善が見込める



他のアプローチ: cosmic shear

• 弱い重力レンズ
   の相関関数解析
   で密度揺らぎを
   直接測定
   (講義 No.4)

⇠ij(✓) = h�i(~✓0)�j(~✓0 + ~✓)i

γi(θ’) γj(θ’+θ)

θ



現実の cosmic shear 解析
• さまざまな challenge
   − 精確な銀河の形状測定
   − 精確な測光赤方偏移
   − 銀河の固有整列 (intrinsic alignment)
   − 精確な非線形パワースペクトルモデル
      (バリオンの効果)



�obs = �G + �I

h�obs�obsi = h�G�Gi+ 2h�G�Ii+ h�I�Ii

固有整列 (intrinsic alignment)

ΔgΔg
• 重力場に応じて銀河の固有
   の向きが整列

• 二点相関に寄与する

重力レンズ 固有整列

cosmic shear 固有整列 (GI) 固有整列 (II)



PII(k, z) = F 2(z)P�(k, z)

PGI(k, z) = F (z)P�(k, z)

F (z) = �AC1⇢crit
⌦m

D(z)

固有整列の観測
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Figure 1. Measurements of [30] and LA model prediction for wg+. The black dashed line is calculated
using the linear theory Pδ(k), and the red solid line uses the Halofit model.
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Figure 2. Measurements of [29] and model predictions for w++ (left panel) and w×× (right panel).
The measurements have been projected along the line-of-sight. Open circles, indicating the original
measurements without the (1 + ξg(r)) correction, are only shown for w++ and on small scales where
there is an appreciable difference. For clarity, these points have a small horizontal offset. Line
convention is the same as in figure 1. A linear y-axis is used for w××. The normalization of the LA
prediction for both statistics is set from the fit to w++.

3.3 Autocorrelation E- and B-modes

The w×× and w++ statistics can be written in terms of curl-free (E) and divergence-free (B)
modes. Lensing by matter produces only E-modes, making such a decomposition a useful
diagnostic in studying the effects of intrinsic alignment and other systematics [49]. As shown
below, only E-modes are produced in the LA model, and thus B-modes could indicate the
presence of separate alignment mechanisms [43].

Following [50], we can express the E- and B-components of the auto-correlation func-

– 8 –

Blazek et al. (2011)
measurement by Okumura & Jing (2009)

• 例えばLRGの観測など
   でよく測定されている

• モデル: linear/nonlinear 
   alignment モデル

nonlinear alignment モデル

linear alignment モデル



固有整列の取り扱い
• 例えば nonlinear alignment モデルを仮定し全体
   的な amplitude をパラメータとする

• トモグラフィー解析で、zビン依存性の違い
   より comic shear と intrinsic alignment を分離し
   宇宙論パラメータを制限することが出来る
   (e.g., Heymans et al. 2013)
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Figure 4. Blue solid circles (solid red triangles) show the value of astar
(bstar) describing the fraction of stars in each halo (see Equation 28), as
a function of the total baryonic content expressed by the value of abar
(see Equation 32). From left to right the values of abar correspond to REF,
DBLIMFV1618, WDENS and AGN. The error bars provide the errors from
each individual fit. Note that if abar = 1 the baryonic fraction is the same
as the universal gas fraction for all haloes. The dashed lines are the best
linear fits to the data from REF, DBLIMFV1618 and AGN. These fits can
capture the general effect of feedback on the stars and hot gas distribution
in the haloes also for the WDENS simulation. Open diamonds indicate the
results for the NOZCOOL and NOSN NOZCOOL scenarios, which do not
follow the trend displayed by the other models.

for the other simulations. This suggests that there might be some
physical reason behind our findings.

The correlation between the parameters breaks down for the
NOZCOOL and NOSN NOZCOOL simulations. Whereas it is true
that simulations which do not implement metal enrichment and
metal-line cooling and simulations without any energetic feedback
from star formation are unrealistic, it is not necessarily true that in-
cluding these processes allows one to obtain simulations with real-
istic gas properties (the REF simulation is an example). However, in
the simulations where metal-line cooling and supernova feedback
are included the conditions for star formation are similar and the in-
jection of energy in the gas followed by its displacement determines
how frequently these conditions are met. This common mechanism
seems to be responsible for the relations we have found. Whether
these simple relations are able to describe a large class of realistic
feedback scenarios is a question that needs to be addressed with
other sets of simulations using a wider variety of feedback imple-
mentations and is beyond the scope of this paper.

If these relations were proven to be generic, they could provide
us with a recipe to determine the hot-gas and the stellar fractions
within a halo of a given mass. This would mean that the feedback
could be described by a single parameter: the fraction of gas left in
a halo as a function of its mass. The parameters of the β-model and
mass-concentration relation characterise the overall distribution of
matter within the haloes and also change the predicted power spec-
trum. In principle, they also depend on the specific feedback model,
but we expect them to be fairly degenerate. For this reason, we keep
α and β as free parameters in our model when we perform a likeli-
hood analysis in the next section. The ranges are chosen to include
values measured in the simulations and are α = [0.0005, 0.15] and
β = [0.45, 0.85]. We do fix the mass-concentration parameters to
those for the AGN simulation. This is just one possible approach
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Figure 5. Ratio between the dark matter power spectra predicted by our
halo model for various baryonic scenarios and the dark matter only case,
for z = 0 and different cosmologies. TheWMAP3 cosmology results (solid
lines) are compared to the same results obtained for a WMAP3 cosmology
but with σ8 = 0.84 (dashed lines). In this case fgas is the same as the
WMAP3 cosmology and the differences are small. The dot-dashed lines
show the results for a WMAP3 cosmology but with fgas = 0.120. In this
case the ratios in the case of the DBLIMFV1618 and AGN scenarios are
significantly changed. The solid thin lines represent the ratio measured in
the simulations (which use the WMAP3 cosmology) to show the accuracy
of the model used in this paper.

to marginalise over the lack of knowledge of the overall profile.
One could also fix the β profile and change the NFW parameters or
vary them both within the ranges set by the simulations. Note that
the NFW parameters do not change much between the various feed-
back scenarios, while the β profile parameters do. The dispersion in
those parameters is also large and depends on the mass. However,
since the hot gas fraction is small, the modifications to the overall
profile have only a minor impact on the power spectrum: to first
order all the modifications arise because of the removal of the hot
gas.

5.3 Cosmology dependence

Finally, we investigate the cosmology dependence of the feedback
model adopted in this paper. To do so we compute the ratio of
power spectra P (k, z)/PDM(k, z) predicted by our halo model
for different cosmologies. Whereas, the universal gas fraction fgas
fixes the fraction of gas present in each halo at the moment of
collapse, Equation (32) determines which fraction of this initial
mass is still within the halo at low redshift and which fraction is
ejected beyond the virial radius. For this reason any change in Ωm

leads to the same modification of the power spectrum as long as
fgas = const. Note that, since we do not know how the profile
parameters vary as a function of cosmology, we keep them fixed.

When we change the normalisation of the matter power spec-
trum σ8, our halo model predicts that the ratio of the power spec-
tra changes slightly. This differs from van Daalen et al. (2011)
who have shown that, in the case of the AGN scenario, the rela-
tive variation to the dark matter only power spectrum is very close
for the WMAP3 and WMAP7 cosmologies. We remind the reader

c⃝ 0000 RAS, MNRAS 000, 000–000

Semboloni et al. (2013)

• k≳1h/Mpcで重要

• 大きなモデル依存性



重力レンズサーベイ 

− CFHTLenS (170 deg2, 限界等級 rlim~24.8)
   すでに完了
− KiDS (1500 deg2, 限界等級 rlim~25.2)
   450 deg2 の結果を出版
− Dark Energy Survey (5000 deg2, 限界等級 rlim~25.0)
   1年目の結果をもうすぐ出版
− Hyper Suprime-cam (1400 deg2, 限界等級 rlim~26.0)
   1年目の結果をもうすぐ出版
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Table 4. Setups for the di↵erent MCMC runs. The first column gives a short descriptive name to the setup and the second and third
column refer the reader to the section and figure in which the setup is discussed. Columns 4–6 indicate which astrophysical systematics
are marginalised over in each run. Column 7 and column 8 report the choices for the redshift distribution and the covariance matrix,
respectively. Column 8, 9, and 10 indicate whether the equation-of-state parameter w is varied, the KiDS results are combined with
Planck (TT + lowP), and 2 ⇥ ⇠B is subtracted from ⇠+. The last column gives the angular scales used for ⇠+. For ⇠� we use scales of
4.2–300 arcmin for all setups.

Setup Sect. Fig. baryons IA photo-z n(z) covariance w comb. w. B mode scales
error Planck subtr. ⇠+

KiDS-450 6.2 6
p p p

DIR analytical – – – 0.05 – 720

DIR 6.3 7 –
p p

DIR analytical – – – 0.05 – 720

CC 6.3 7 –
p p

CC analytical – – – 0.05 – 720

BOR 6.3 7 –
p

– BOR analytical – – – 0.05 – 720

BPZ 6.3 7 –
p

– BPZ analytical – – – 0.05 – 720

no systematics 6.4 – – – – DIR analytical – – – 0.05 – 720

N -body 6.4 – – – – DIR N -body – – – 0.05 – 720

DIR no error 6.5 8 –
p

– DIR analytical – – – 0.05 – 720

B mode 6.5 8 –
p

– DIR analytical – –
p

0.05 – 720

⇠+ large-scale 6.5 8 –
p

– DIR analytical – – – 4.02 – 720

wCDM 6.7 9
p p p

DIR analytical
p

– – 0.05 – 720

+Planck 7 –
p p p

DIR analytical –
p

– 0.05 – 720

0.16 0.24 0.32 0.40

�m

0.6

0.8

1.0

1.2
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KiDS-450

CFHTLenS (MID J16)

WMAP9+ACT+SPT

Planck15

Figure 6. Marginalized posterior contours (inner 68% CL, outer 95% CL) in the ⌦m-�8 plane (left) and ⌦m-S8 plane (right) from the
present work (green), CFHTLenS (grey), pre-Planck CMB measurements (blue), and Planck 2015 (orange). Note that the horizontal
extent of the confidence contours of the lensing measurements is sensitive to the choice of the prior on the scalar spectrum amplitude As.
The CFHTLenS results are based on a more informative prior on As artificially shortening the contour along the degeneracy direction.

pact on the overall result, and since for a sensitivity test
we are more interested in parameter changes than in actual
values, we revert to a dark-matter only power spectrum in
this comparison. This choice also enables us to switch from
HMcode to the faster Takahashi et al. (2012) model for the
non-linear power spectrum.

For each of the three calibration methods (DIR, CC,
BOR) we estimate statistical errors from a bootstrap re-
sampling of the spectroscopic calibration sample (see Sec-
tion 6.2 for details of the implementation). Including those
uncertainties will broaden the contours. As can be seen in
Fig. 2 these bootstrap errors are very small for the BOR
method. This is due to the fact that a lot of information
in that technique is based on the photometric P (z) and the
re-calibration is more stable under bootstrap re-sampling of
the spectroscopic calibration sample than for the other two
methods. Hence to further speed up the MCMC runs we ne-
glect the BOR errors in the following with no visible impact
on the results. The uncertainties on the DIR method – while

larger than the BOR errors – are also negligible compared
to the shot noise in the shear correlation function (see Ap-
pendix C2). We nevertheless include these errors here (as
before) since DIR is our primary calibration method. The
statistical errors on the CC method are larger than for the
two other methods, owing to the as yet small area covered by
the spectroscopic surveys that we can cross-correlate with.
More importantly, we estimate that the limited available
area also gives rise to a larger systematic uncertainty on the
CC method compared to the DIR technique. All major re-
quirements for the DIR technique are met in this analysis
whereas the CC method will only realise its full potential
when larger deep spec-z surveys become available.

The resulting confidence contours in the ⌦m-�8 plane
for the four cases are shown in Fig. 7. All four cases give
fully consistent results although there are some shifts in
the contours with respect to each other. However, with
��2

e↵ ' �10, we find that the DIR and CC methods provide
a better fit to the data as compared to the BPZ and BOR

MNRAS 000, 1–49 (2016)
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by ±7 per cent. Note that we chose the value of 7 per cent from the
average error over the range of k scales tested in Eifler (2011). For
angular scales where more than a 10 per cent difference is found in
the expected signal, between these two different non-linear correc-
tion regimes, we remove these scales from our analysis. As the ⇠�
statistic probes significantly smaller k scales compared to the ⇠

+

statistic, at a fixed ✓, we cut more ⇠� data than ⇠
+

(see Benjamin
et al. 2013, for further discussion). For ⇠

+

, our requirement for less
than a 10 per cent deviation corresponds to the removal of data with
✓ <

⇠ 3 arcmin for tomographic bin combinations including bins 1
and 2. For ⇠�, this corresponds to removing data with ✓ <

⇠ 30 ar-
cmin for tomographic bin combinations including bins 1, 2, 3 and
4, and data with ✓ <

⇠ 16 arcmin for tomographic bin combinations
including bins 5 and 6. Applying these cuts in angular scale results
in a final data vector of length p = 120. As the ⇠± statistic is an
integral over many k scales weighted by J

0

and J
4

Bessel func-
tions, one cannot directly relate the limits we place on ✓, to limits
on k. We note, however, that as these cuts do preferentially remove
the smallest physical k scales where the theoretical prediction to
the power spectrum is expected to be most impacted by baryonic
feedback effects. This conservative analysis to test the non-linear
correction therefore also works as a mitigation strategy to avoid
uncertain baryon feedback errors. For this conservative analysis we
find no change in the best-fit measurement of �

8

(⌦

m

/0.27)↵, but a
reduction in the constraining power by roughly 20 per cent (see the
‘Low ✓ scales removed’ row in table 2). We also lose roughly 20
per cent of the constraining power on the intrinsic alignment am-
plitude A with this conservative analysis. As the best-fit value for
�
8

(⌦

m

/0.27)↵ remains unchanged, we can conclude that the in-
clusion of small-scale data does not introduce any significant bias
in our results. Furthermore, as our focus for this analysis is the mit-
igation of intrinsic galaxy alignments, which are most tightly con-
strained by the low-redshift bins preferentially cut with this type
of conservative analysis, the CFHTLenS results that follow include
the full angular scale range shown in Figure 2.

4.3 Joint Cosmological Parameter constraints

We present joint cosmological parameter constraints from
CFHTLenS combined with WMAP7, BOSS and R11 for four cos-
mological models testing flat and curved ⇤CDM and wCDM cos-
mologies. Table 3 lists the best-fit 68 per cent confidence limits for
our cosmological parameter set for the combination of CFHTLenS
and WMAP7 (first line for each parameter), CFHTLenS, WMAP7
and R11 (second line for each parameter) and for CFHTLenS,
WMAP7, BOSS and R11 (third line for each parameter). For
comparison the figures in this section also show constraints for
WMAP7-only and WMAP7 combined with BOSS and R11. We
refer the reader to Komatsu et al. (2011) and Anderson et al.
(2012) for tabulated cosmological parameter constraints for the
non-CFHTLenS combination of data sets shown, noting that we
find good agreement with their tabulated constraints. We also re-
fer the reader to Kilbinger et al. (2013) for CFHTLenS-only pa-
rameter constraints for the curved and wCDM cosmological mod-
els tested in this section. Whilst CFHTLenS currently represents
the most cosmologically constraining weak lensing survey, it spans
only 154 square degrees and is therefore not expected to have sig-
nificant constraining power when considered alone. This is demon-
strated in Figure 5 which compares parameter constraints in the
�
8

� ⌦

m

plane for a flat ⇤CDM cosmology. The wide constraints
from CFHTLenS-only are shown in pink (note the inner 68 per
cent confidence region was shown in pink in Figure 4), in compar-

Figure 5. Flat ⇤CDM joint parameter constraints (68 and 95 per cent
confidence) on the amplitude of the matter power spectrum controlled by
�
8

and the matter density parameter ⌦
m

from CFHTLenS-only (pink),
WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), and
CFHTLenS combined with BOSS, WMAP7 and R11 (white).

ison to the tight constraints from WMAP7-only (blue). The power
of lensing, however arises from its ability to break degeneracies
in this parameter space owing to the orthogonal degeneracy direc-
tions. BOSS combined with WMAP7 and R11 is shown green and
when CFHTLenS is added in combination with BOSS, WMAP7
and R11 (white) we find the combined confidence region decreases
in area by nearly a factor of two. As we will show in this section,
the tomographic lensing information presented in this analysis is
therefore very powerful when used in combination with auxiliary
data sets.

The figures that follow in this section all compare constraints
for different combinations of cosmological parameters and cosmo-
logical models with the following colour-scheme: WMAP7-only
(in blue), WMAP7 combined with CFHTLenS and R11 (in pink),
WMAP7 combined with BOSS and R11 (in green) and all four
data sets in combination (in white). Comparing the green contours
with the pink contours allows the reader to gauge the relative power
of BOSS and CFHTLenS when either survey is used in combina-
tion with WMAP7 and R11. Comparing the green contours with the
white contours allows the reader to gauge the extra contribution that
CFHTLenS makes to BOSS, R11 and WMAP7 in breaking differ-
ent parameter degeneracies and constraining cosmological param-
eters.

4.3.1 Constraints in the �
8

� ⌦

m

plane

Figure 6 shows joint parameter constraints on the normalisation of
the matter power spectrum �

8

and the matter density parameter
⌦

m

for four cosmological models: flat ⇤CDM, flat wCDM, curved
⇤CDM and curved wCDM. The comparison of the results for the
four cosmological models show the decreased WMAP7 sensitiv-
ity to these two cosmological parameters when extra freedom in
the cosmological model is introduced, such as dark energy w

0

, or
curvature. We find slightly tighter constraints from CFHTLenS in
combination with WMAP7 and R11 (pink), in comparison to BOSS

c� 0000 RAS, MNRAS 000, 000–000

CFHTLenS (Heymans et al. 2013)
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Figure 5. “DLS-ONLY” constraints on ⌦
m

and �8 for ⇤CDM.
The inner and outer contours represent 68% and 95% confidence
regions, resp. Flat priors are used. For the “regular” prior set-
ting, we marginalize over the 0.6 < h < 0.8, 0.92 < n

s

< 1.02,
and 0.03 < ⌦

b

< 0.06 intervals, which bracket the 3� ranges con-
strained by previous CMB or SNIa+Cepheid studies. The “wide”
prior setting refers to the intervals: 0.4 < h < 1.2, 0.7 < n

s

< 1.2,
and 0 < ⌦

b

< 0.1, which are adopted in the CFHTLenS studies.

2013), WMAP9 (Hinshaw et al. 2013), Planck2015-CMB
(Planck Collaboration et al. 2015a), and Planck2015-SZ
(Planck Collaboration et al. 2015b). The result from
Planck2015-SZ depends on the mass bias prior 1� b and
the external data. We choose the result from the joint
constraint with BAO using the value 1�b = 0.688±0.072
of von der Linden et al. (2014).
An interesting & 2 � tension is present between the

Planck2015-CMB and the CFHTLenS results as also
noted in previous studies (e.g., Planck Collaboration et
al. 2015a; MacCrann et al. 2015). It is worth noting
that the CFHTLenS data have been analyzed in sev-
eral studies with slightly di↵erent techniques (e.g., Fu
et al. 2014; Benjamin et al. 2013; Kilbinger et al.
2013; Heymans et al. 2013), which all provide highly
consistent results. This low-normalization cosmology is
also favored by Mandelbaum et al. (2013), who com-
bine galaxy-galaxy lensing and galaxy clustering signals
from SDSS-DR 7. If this tension between weak-lensing
and CMB studies persists, the discrepancy may be inter-
preted as indicating some incompleteness in our under-
standing (e.g., MacCrann et al. 2015); some may also
regard the di↵erence between Planck2015-CMB and -SZ
results as supporting this low-z vs. high-z tension. In
this light, the DLS result is intriguing because the survey
provides one of the tightest constraints and is indepen-
dent in its design and analysis method. As shown Fig-
ure 6, the �8⌦a

m

constraint from DLS is consistent with
those from both WMAP9 and Planck2015. Therefore,
as far as the DLS result is concerned, it is premature to
argue that new physics is required to resolve this low-z
vs. high-z tension.

5.4. Joint Probes with External Data

We consider both ⇤CDM and wCDM models with and
without the curvature constraint. The flat ⇤CDM model
is our baseline model and is described by the following

Table 2
BAO measurements used in the current joint constraint.

z D
V

(z)/r
s

Survey Reference

0.1 2.98± 0.27 6dFGS Beutler et al. (2011)
0.35 8.88± 0.17 SDSS-DR7 Padmanabhan et al. (2012)
0.57 13.67± 0.22 SDSS-DR9 Anderson et al. (2012)
0.44 10.92± 3.67 WiggleZ Blake et al. (2012)
0.60 13.77± 5.94 WiggleZ Blake et al. (2012)
0.73 16.89± 9.15 WiggleZ Blake et al. (2012)

five parameters: ⌦
m

, �8, ⌦b

, n
s

, and h. The flat wCDM
extension requires one additional parameter w, which
characterizes the equation of state parameter w = p/⇢.
The parameter ⌦⇤ is added when we relax the curvature
constraint ⌦

k

⌘ 1� ⌦
m

� ⌦⇤ ⌘ 0.
For external data, we use BAO, CMB and SNIa data

and provide their details as follows. We combine the
Baryonic Acoustic Oscillation (BAO) results published
by Anderson et al. (2012), Padmanabhan et al. (2012),
Beutler et al. (2011), and Blake et al. (2012). These re-
sults were derived from the 6dFGS (Johns et al. 2004),
SDSS-DR7, SDSS-DR9, and WiggleZ surveys and were
also used by WMAP9 in their joint cosmological param-
eter constraint. Table 2 summarizes their e↵ective red-
shifts and measurements on D

V

(z)/r
s

, where r
s

is the
sound horizon distance, and D

V

(z) is the distance mea-
sure at z defined as:

D
V

(z) =


(1 + z)2D2

A

(z)
cz

H(z)

�1/3
. (22)

In equation 22, D
A

(z) is an angular diameter distance to
the redshift z. We use the covariances between the last
three measurements in Table 2 published in Blake et al.
(2012).
For the cosmic microwave background, we use the

Wilkinson Microwave Anisotropy Map 9-year result
(Hinshaw et al. 2013; hereafter WMAP9)14. WMAP9
update their previous results based on the final 9-year
data with some revised calibrations, improving the av-
erage parameter uncertainty by ⇠10% compared to their
7-year results (Komatsu et al. 2011).
For supernova data, we utilize the Union2.1 cata-

log15 provided by Suzuki et al. (2012). The compila-
tion contains 580 supernovae distance moduli within the
0.015 < z < 1.41 range. The supernova �2 function is
given by

�2
SNIa

=
X

i

[µ
B

(↵,�,M
B

)� µ(z,⌦
m

,⌦⇤, w)]
2

�2
total

, (23)

where the summation is performed over 580 supernovae.
The distance modulus µ

B

is a function of the rest-frame
B-band magnitudem

B

, the universal absolute SNIa mag-
nitude, M

B

, the shape of stretch parameter s, and the
color c:

µ
B

= m
B

�M
B

+ ↵(s� 1)� �c (24)

where the linear response parameters ↵ = 0.1219 and
� = 2.4657 are determined globally by fitting all 580 su-

14 Although we do not directly use the Planck2015-CMB result,
we will present the comparisons of our joint probe results with
those from Planck2015-CMB in §6.4

15 available at http://supernova.lbl.gov/Union

DLS (Jee et al. 2016)
6 The Dark Energy Survey Collaboration

Figure 2. Constraints on the amplitude of fluctuations �8 and
the matter density ⌦m from DES SV cosmic shear (purple filled
contours) compared with constraints from Planck (red filled con-
tours) and CFHTLenS (orange filled, using the correlation func-
tions and covariances presented in Heymans et al. (2013), and the
‘original conservative scale cuts’ described in Section 6.1.1). DES
SV and CFHTLenS are marginalised over the same astrophysical
systematics parameters and DES SV is additionally marginalised
over uncertainties in photometric redshifts and shear calibration.
Planck is marginalised over the 6 parameters of ⇤CDM (the 5 we
vary in our fiducial analysis plus ⌧). The DES SV and CFHTLenS
constraints are marginalised over wide flat priors on ns, ⌦b and
h (see text), assuming a flat universe. For each dataset, we show
contours which encapsulate 68% and 95% of the probability, as is
the case for subsequent contour plots.

The fiducial data vector is the real-space shear–shear
angular correlation function ⇠±(✓) measured in three red-
shift bins (hereafter bins 1, 2, 3, with ranges of 0.3 < z <
0.55, 0.55 < z < 0.83 and 0.83 < z < 1.3, and galaxies
assigned to bins according the mean of their photometric
redshift probability distribution function) including cross-
correlations, as shown in Figure 1. The data vector initially
includes galaxy pairs with separations between 2 and 300 ar-
cmin (although many of these pairs are excluded by the scale
cuts described in Section 4.2). We focus mostly on placing
constraints on the matter density of the Universe, ⌦m, and
�8, defined as the rms mass density fluctuations in 8 Mpc/h
spheres at the present day, as predicted by linear theory.

We marginalise over wide flat priors 0.2 < h < 1, 0.01 <
⌦b < 0.07 and 0.7 < ns < 1.3, assuming a flat Universe, and
thus we vary 5 cosmological parameters in total. The priors
were chosen to be wider than the constraints in a variety
of existing Planck chains.. In practice the results are very
similar to those with these parameters fixed, due to the weak
dependence of cosmic shear on these other parameters. We
use a fixed neutrino mass of 0.06 eV.

We summarise our systematics treatments below:
(i) Shear calibration: For each redshift bin, we
marginalise over a single free parameter to account for
shear measurement uncertainties: the predicted data vector
is modified to account for a potential unaccounted multi-
plicative bias ⇠ij ! (1+mi)(1+mj)⇠

ij . We place a separate
Gaussian prior on each of the three mi parameters. Each is

centred on 0 and of width 0.05, as advocated by J15. See
Section 5.1 for more details.
(ii) Photometric redshift calibration: Similarly, we
marginalise over one free parameter per redshift bin to de-
scribe photometric redshift calibration uncertainties. We al-
low for an independent shift of the estimated photomet-
ric redshift distribution ni(z) in redshift bin i i.e. ni(z) !
ni(z � �zi). We use independent Gaussian priors on each of
the three �zi values of width 0.05 as recommended by Bo15.
See Section 5.2 for more details.
(iii) Intrinsic alignments: We assume an unknown ampli-
tude of the intrinsic alignment signal and marginalise over
this single parameter, assuming the non-linear alignment
model of Bridle & King (2007). See Section 5.3 for more
details of our implementation and tests on the sensitivity of
our results to intrinsic alignment model choice.
(iv) Matter power spectrum: We use halofit (Smith
et al. 2003a), with updates from Takahashi et al. (2012) to
model the non-linear matter power spectrum, and refer to
this prescription simply as ‘halofit’ henceforth. The range
of scales for the fiducial data vector is chosen to reduce the
bias from theoretical uncertainties in the non-linear matter
power spectrum to a level which is not significant given our
statistical uncertainties (see Sections 4.2 and 5.4, and Table
2 for the minimum angular scale for each bin combination).
We thus marginalise over 3 + 3 + 1 = 7 nuisance parame-
ters characterising potential biases in the shear calibration,
photometric redshift estimates and intrinsic alignments re-
spectively.

Figure 2 shows our main DES SV cosmological con-
straints in the ⌦m � �8 plane, from the fiducial data vec-
tor and systematics treatment, compared to those from
CFHTLenS and Planck. For the CFHTLenS constraints, we
use the same six redshift bin data vector and covariance as
H13, but apply the conservative cuts to small scales used
as a consistency test in that work (for ⇠+ we exclude an-
gles < 30 for redshift bin combinations involving the lowest
two redshift bins, and for ⇠�, we exclude angles < 300 for
bin combinations involving the lowest four redshift bins, and
angles < 160 for bin combinations involving the highest two
redshift bins). We see that in this plane, our results are mid-
way between the two datasets and are compatible with both.
We discuss this further in Section 6.1.

Using the MCMC chains generated for Figure 2 we find
the best fit power law �8(⌦m/0.3)↵ to describe the degen-
eracy direction in the �8, ⌦m plane (we estimate ↵ using
the covariance of the samples in the chain in log�8 � log⌦m

space). We find ↵ = 0.478 and so use a fiducial value for ↵
of 0.5 for the remainder of the paper 9 We find a constraint
perpendicular to the degeneracy direction of

S8 ⌘ �8(⌦m/0.3)0.5 = 0.81± 0.06 (68%). (1)

Because of the strong degeneracy, the marginalised 1d con-
straints on either ⌦m or �8 alone are weaker; we find
⌦m = 0.36+0.09

�0.21 and �8 = 0.81+0.16
�0.26. In Table 1 we also show

other results which are discussed in the later sections, includ-

9 We would advise caution when using S8 to characterise the DES
SV constraints instead of a full likelihood analysis - S8 is sensi-
tive to the tails of the probability distribution, and also weakly
depends on the priors used on the other cosmological parameters.

MNRAS 000, 1–20 (2015)

DES SV (DES collab. 2016)



cosmic shear による σ8 制限 

DES

DLS

KiDS

2016

Kilbinger 2015 year

Kilbinger 2015, updated by C. Heymans 

Planck 2015
Planckよりやや
低め, はっきり
矛盾とまでは
いえない？



密度揺らぎ問題: まとめ
• CMB (Planck) から期待される近傍宇宙の密度
   揺らぎは実際の観測とくらべて高め

• 銀河団の number counts では重力レンズで銀河
   団質量を精確に較正することが必要

• cosmic shear による密度揺らぎの直接的な
   観測も可能

• KiDS, DES, HSC の進展により近いうちにもっと
   はっきりした描像が得られるだろう



Hyper Suprime-Cam (HSC)

PI: S. Miyazaki 
(NAOJ)

 http://subarutelescope.org/Projects/HSC/

• 重さ 3 トン、116個のCCD
   チップ、視野 1.7 deg2

http://subarutelescope.org/Projects/HSC/






サーベイ速度

• Etendue = 視野 × 
   主鏡面積
   ∝ サーベイ速度

• 現存するカメラの
   中で HSC は圧倒
   的に最大 etendue
   をもつ

(2022−)



結像性能

• 視野全体に渡って
   ~0.4” FWHM の
   優れたシーイング

(HSC-Wide i-band, 200 sec)

1.5 deg
HSC Project Miyazaki

PSF Evaluation

HSC-i 200 sec 

0.40

0.47



簡単な歴史
• 2006  HSC 科研費スタート (PI: 唐牛)

• 2008  プリンストンと台湾参加

• 2009  SuMIRe 研究費スタート (PI: 村山)

• 2012 Oct すばる戦略枠 (SSP) プロポーザル提出

• 2013 Feb  全 CCD チップでファーストライト 

• 2013 Apr  HSC-SSP採択 (計300晩)

• 2014 Mar  HSC-SSPサーベイ開始 (5-6年)



すばる戦略枠 (SSP)

• すばる戦略枠 = Subaru Strategic Program (SSP)

• すばるに新しい装置が搭載された時、まと
   まった時間を割り当てインパクトの大きい   
   結果を得る

• これまで: SEEDS (HiCHAO) 120晩 
                  FastSound (FMOS) 40晩
                  HSC-SSP (HSC) 300晩



HSC-SSPサーベイHSC Survey Fields�

R.A.

DEC

HSC-D

HSC-D
HSC-D/UD

HSC-W

Galactic Extinction E(B-V)

•  The HSC fields are selected based on …!
–  Synergy with other data sets: SDSS/BOSS, The Atacama 

Cosmology Telescope CMB survey (from Chile), X-ray (XMM-
LSS), spectroscopic data sets!

–  Spread in RA!

–  Low dust extinction!

 �

• 三つのレイヤーから構成
   − wide         (1400 deg2, 限界等級 rlim ~ 26, grizy)
   − deep         (27 deg2,     限界等級 rlim ~ 27, grizy+3NBs)
   − ultra-deep (3.5 deg2,    限界等級 rlim ~ 28, grizy+3NBs)

HSC-SSP proposal

http://hsc.mtk.nao.ac.jp/ssp/

http://hsc.mtk.nao.ac.jp/ssp/


サーベイの比較

広く深い HSC
サーベイは
たいへんユニー
ク



現在の状況 (as of 2017 Mar 8) 

• 137夜分すでに観測

• ~300 deg2 分の Wide の full depth full color 領域



HSC-SSP サーベイポリシー
• 日本の研究者は誰でも参加可能 (“all-Japan”)

• SDSS と同様のオープンな “bottom up” ポリシー

• すべての研究者は、プロジェクトをアナウンス
   しオープンに研究を進める限りにおいて自分の
   興味に基づいて自由にテーマを設定し研究を
   行うことができる

• メーリングリスト、wiki、ワーキンググループ、
   定期的な telecon などによって情報交換



catalog can be retrieved via SQL query



nice image viewer `hscMap’ for visual inspection



HSC-SSP weak lensing の現状
• 銀河の shape 測定、カタログの作成、系統誤差
   や精度のチェックを皆でずっと行ってきた

• 最初のサイエンス解析用のカタログ (~160 deg2)
   がほぼ完成

• 今年春から夏にかけて初期成果論文を投稿予定

(以下の結果はすべてpreliminary)
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Fig. 3. Mass (upper) and galaxy mass (lower) maps in the XMM field.

the large-scale power. We also use the larger filter size than that

used in Miyazaki et al. (in prep.). Systematic tests with B-mode

mass maps are also presented in Miyazaki et al. (in prep.).

In this paper we follow a mass reconstruction method pro-

posed by Kaiser & Squires (1993). Since we are interested in

large-scale mass distributions, in this paper we always consider

the weak lensing limit, |κ|≪ 1. First we smooth the shear field

γα(θ) (α= 1, 2) as (Seitz & Schneider 1995)

γ̂α(θ) =

∑

i
wiγα(θi)W (|θ−θi|)

∑

i
wi(1+mi)W (|θ−θi|)

, (1)

where W (θ) is the Gaussian smoothing kernel

W (θ) =
1

πθ2s
exp

(

−
θ2

θ2s

)

. (2)

We then convert the shear field to the convergence field via

κ̂(θ) =
1
π

∫

d2θ′
γ̂t(θ

′|θ)

|θ−θ′|2
, (3)

where γt(θ
′|θ) is a tangential shear at position θ′ computed

with respect to the reference position θ.

In practice we construct the mass map in a regular grid

adopting a flat-sky approximation. First we create a pixelized

shear map for each patch with a pixel size of 0.′5, apply the Fast

Fourier Transform, and conduct the convolutions in the Fourier

space to obtain the smoothed convergence map, which is some-

times referred as an E-mode mass map. The imaginary part of

the reconstructed convergence map represents a B-mode mass

map, which is used to check any residual systematics in our

weak lensing measurements.

We also construct a noise map as follows. We randomly

rotate orientations of individual galaxies, and construct a mass

map using the randomized galaxy catalog. We repeat this many

times to create 300 mass maps from 300 realizations of ran-

domized mass maps. We then compute a standard deviation

of each pixel from the 300 random mass maps to construct a

“sigma map”, a map showing the spatial variation of the statis-

tical noise of the reconstructed mass map. From the sigma map

we can define signal-to-noise ratio (S/N) for each pixel simply

from the ratio of the κ value of the reconstructed mass map to

the standard deviation of κ from the sigma map.

In real observations, there are several regions where data

are missing due to bright star masks and edges. Reconstructed

mass maps in and near those regions are noisy and are not suit-

able for analysis. To determine the mask region for each mass

map, we construct a number density map of the input galaxy

catalog by convolving the number density in each pixel with

the same smoothing kernel as used in constructing mass maps

(equation 2). Next we derive the mean of the number density

map with 2.5σ clipping. We adopt clipping because the num-

ber desnity map has a non-Gaussian tail. We mask all pixels

with the smoothed number density less than 0.5 times the mean

number density as they correspond to edges and regions that are

affected by bright star masks. In addition, we derive the mean

of the sigma map with 2.5σ clipping and mask all pixels with

Oguri et al. in prep.

(XMM領域)

重力レンズ
質量マップ

銀河の星質量
マップ
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Fig. 3. Mass (upper) and galaxy mass (lower) maps in the XMM field.

the large-scale power. We also use the larger filter size than that

used in Miyazaki et al. (in prep.). Systematic tests with B-mode

mass maps are also presented in Miyazaki et al. (in prep.).

In this paper we follow a mass reconstruction method pro-

posed by Kaiser & Squires (1993). Since we are interested in

large-scale mass distributions, in this paper we always consider

the weak lensing limit, |κ|≪ 1. First we smooth the shear field
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where W (θ) is the Gaussian smoothing kernel
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We then convert the shear field to the convergence field via

κ̂(θ) =
1
π

∫

d2θ′
γ̂t(θ

′|θ)

|θ−θ′|2
, (3)

where γt(θ
′|θ) is a tangential shear at position θ′ computed

with respect to the reference position θ.

In practice we construct the mass map in a regular grid

adopting a flat-sky approximation. First we create a pixelized

shear map for each patch with a pixel size of 0.′5, apply the Fast

Fourier Transform, and conduct the convolutions in the Fourier

space to obtain the smoothed convergence map, which is some-

times referred as an E-mode mass map. The imaginary part of

the reconstructed convergence map represents a B-mode mass

map, which is used to check any residual systematics in our

weak lensing measurements.

We also construct a noise map as follows. We randomly

rotate orientations of individual galaxies, and construct a mass

map using the randomized galaxy catalog. We repeat this many

times to create 300 mass maps from 300 realizations of ran-

domized mass maps. We then compute a standard deviation

of each pixel from the 300 random mass maps to construct a

“sigma map”, a map showing the spatial variation of the statis-

tical noise of the reconstructed mass map. From the sigma map

we can define signal-to-noise ratio (S/N) for each pixel simply

from the ratio of the κ value of the reconstructed mass map to

the standard deviation of κ from the sigma map.

In real observations, there are several regions where data

are missing due to bright star masks and edges. Reconstructed

mass maps in and near those regions are noisy and are not suit-

able for analysis. To determine the mask region for each mass

map, we construct a number density map of the input galaxy

catalog by convolving the number density in each pixel with

the same smoothing kernel as used in constructing mass maps

(equation 2). Next we derive the mean of the number density

map with 2.5σ clipping. We adopt clipping because the num-

ber desnity map has a non-Gaussian tail. We mask all pixels

with the smoothed number density less than 0.5 times the mean

number density as they correspond to edges and regions that are

affected by bright star masks. In addition, we derive the mean

of the sigma map with 2.5σ clipping and mask all pixels with

Oguri et al. in prep.
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三次元質量マップ
Oguri et al. in prep.
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Fig. 11. Three-dimensional mass map from the VVDS region (Left). We also show the corresponding three-dimensional galaxy mass map from the LRG

sample in the Right panel. Here he redshift range is restricted to 0.15 < z < 0.75.

Fig. 12. Pearson correlation coefficients (equation 6) between three-

dimensional mass maps from weak lensing and three-dimensional galaxy

mass maps from LRGs. Here we show the diagonal part the correlation co-

efficients (i.e., same redshift bins for mass maps and galaxy mass maps) as

a function of redshift. Both E-mode (filled squares) and B-mode (filled circles)

mass map results are shown. Errors are estimated from 50 mock samples

of the weak lensing shear catalog.

weak lensing studies. This is mainly due to the high num-

ber density of galaxies of n̄ ∼ 20 arcmin−2 for weak lensing

analysis. In particular previous three-dimensional weak lensing

mass reconstructions have been limited to relatively small area

(e.g., Massey et al. 2007), and this work successfully applied

the technique to much wider area. Given the validation of mass

maps presented in this paper, we plan to use HSC weak lens-

ing mass maps to study the large-scale structure of dark mat-

ter and baryon, including the construction of a mass-selected

cluster sample (Miyazaki et al., in prep.) and the correlation

of dark matter and hot gas from the cross-correlation of weak

lensing mass maps and Sunyaev-Zel’dovich maps (Osato et al.,

Fig. 13. Matrix of Pearson correlation coefficients for the same and different

redshift bins between three-dimensional E-mode (upper) and B-mode (lower)

mass maps and three-dimensional galaxy mass maps.

(VVDS領域)

重力レンズ
質量マップ

銀河の星質量
マップ

z=0.15
z=0.75

z=0.15
z=0.75
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Fig. 11. Three-dimensional mass map from the VVDS region (Left). We also show the corresponding three-dimensional galaxy mass map from the LRG

sample in the Right panel. Here he redshift range is restricted to 0.15 < z < 0.75.

Fig. 12. Pearson correlation coefficients (equation 6) between three-

dimensional mass maps from weak lensing and three-dimensional galaxy

mass maps from LRGs. Here we show the diagonal part the correlation co-

efficients (i.e., same redshift bins for mass maps and galaxy mass maps) as

a function of redshift. Both E-mode (filled squares) and B-mode (filled circles)

mass map results are shown. Errors are estimated from 50 mock samples

of the weak lensing shear catalog.
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ber density of galaxies of n̄ ∼ 20 arcmin−2 for weak lensing

analysis. In particular previous three-dimensional weak lensing

mass reconstructions have been limited to relatively small area

(e.g., Massey et al. 2007), and this work successfully applied

the technique to much wider area. Given the validation of mass

maps presented in this paper, we plan to use HSC weak lens-

ing mass maps to study the large-scale structure of dark mat-

ter and baryon, including the construction of a mass-selected

cluster sample (Miyazaki et al., in prep.) and the correlation
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銀河団探査
mass map from Subaru/HSC

HSC

DES

• 質量マップのピークで銀河団探査 (“mass-selected”)

• HSCの深さが本質的に重要



質量マップで選ばれた銀河団
Miyazaki et al. in prep.
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Fig. 2. Weak lensing Map SN map

The location of the CAMIRA cluster is overlaid on Fig. 1 to
3 as small filled circles. Clusters are searched around the peak
with the a loose matching tolerance of 6 arcmin at first. Next,
we calculated the comoving distance between the peak and the
cluster center using the estimated cluster redshift. Then, we
identify the peak with the cluster when the distance is within
1.5 h−1 Mpc. We have to deal with these multiple-matched case
carefully because the weak lensing mass estimate is difficult.

In Table 5, we listed the coordinates of the detected peaks
sorted by the SN together with the CAMIRA redshift, z, the
richness, λ and the angular distance, d, between the peak and
the cluster location. Open circles on Fig. 1 to 3 show the loca-
tion of the peaks matched with a single CAMIRA cluster. When
multiple clusters are matched, the multiplicity is indicated by
the number of concentric open circles. The diameter of the cir-
cle roughly reflect the rank of the cluster (Highly ranked peaks
have larger circles). Table 2 summarizes the multiplicity of the
matching.

We have eleven peaks which have no counterpart in the
CAMIRA cluster catalog. What is the nature of these peaks
? We search for the counterparts in a cluster catalogs gener-
ated by Wen et al. (2015) (WHL15) based on the SDSS catalog
with the same matching tolerance of 1.5 h−1 Mpc in physical
distance. Eight peaks out of the eleven peaks found the coun-
terparts within 0.5 h−1 Mpc. The mean richness of the entire
WHL15 clusters is 24.7 and the half of matched counterparts
have the richness that exceed the mean and the other half have
the richness below the mean.

Each cluster catalog has different selection criteria.
CAMIRA has set the lowest redshift limit at 0.1 and this ex-
plains why the peak rank 11 is unmatched with CAMIRA cat-
alog (Abell 2457, z=0.594). We note that the definition of the
richness is different in CAMIRA and WHL15. discussion TBD

Three peaks are still unmatched neither with CAMIRA nor
WHL15; rank = 21, 60, 66. We inspected the images around
the peak 21 and found, with a distance of X.XX arcmin from

• 71個のピーク (S/N>4.7) を同定
   → mass-selected 銀河団サンプルを大幅に増加



HSC (now)

HSC (full area)



SZ銀河団質量測定
Miyatake et al. in prep.

SHORT TITLE 5

Figure 3. Weak lensing signal for different source galaxy selections

Figure 4. Mass bias

• HSCサーベイ領域は
   ACTPolサーベイと
   大きな overlap

• ACTPol SZ銀河団の
   質量をHSCの重力
   レンズで測定

• 質量バイアス (1-b)
   を制限し密度揺らぎ
   を決める

スタック重力レンズシグナル



Cosmic shear: 実空間
Hamana et al. in prep.

• shear 二点相関を高S/Nで検出

• 星と銀河の二点相関から見積もった系統誤差
   は大スケールを除いて無視できる



Cosmic shear: フーリエ空間
Hikage et al. in prep.

Figure 4: The shear power spectra averaged over 6 fields with the inverse variance weight. Lower
panels are the BB and EB lensing spectra relative to the EE spectrum.

4

Figure 5: Tomographic lensing power spectrum averaged over 6 fields with 3 bins: (zmin, zmax) =
(0.3, 0.8), (0.8, 1.2), and(1.2, 1.9).

5

• 擬似スペクトル法
   を用いてEB分解
    (Hikage et al. 2011)

• マスクの影響を補
   正し正しくパワー
   スペクトルが求め
   られている



HSCサーベイ: まとめ
• HSCサーベイは順調にすすんでおり、弱い重力
   レンズ解析もカタログを作成し論文を準備して
   いるところである

• アイデアがあればぜひ使ってください


