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クエーサー複数像間の時間の遅れ

Poindexter et al. (2007)

• クエーサー重力レンズ
   長期モニタリングより
   時間の遅れが測定可
   (~20の系ですでに測定)
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時間の遅れと H0

• 時間の遅れは絶対距離スケール H0 を測定
   できる貴重な手法 (Refsdal 1964)

観測
(典型的には
数ヶ月)

観測 (θ) +
質量モデル

三つの距離の比
∝ H0−1



Figure 3. Confidence regions (68% and 95%) of the joint constraints in the H
0

-N
e↵

parameter space for
Planck 2015 data (blue) and Planck 2015 + BAO data (green) using full temperature and polarization power
spectra (left) and without including high ` polarization data (right). Here all species behave like neutrinos
when perturbations are concerned. The vertical bands correspond to the local H

0

measurement [20].

Changes on the early time expansion history are usually enclosed in the parameter Ne↵ : the
e↵ective number of relativistic species. For three standard neutrinos Ne↵ = 3.0463 [48]. In fact light
neutrinos are relativistic at decoupling time and they behave like radiation: changing Ne↵ changes
the composition of the energy density, changing therefore the early expansion history. This has been
called “dark radiation” but it can mimic several other physical e↵ects see e.g., [49–60]. For example a
model such as the one proposed in [51] of a thermalized massless boson, has a �Ne↵ between ⇠ 0.57
and 0.39 depending on the decoupling temperature [3].

If we define �Ne↵ as Ne↵ � 3.04, it is well known that a �Ne↵ > 0 would increase the CMB-
inferred H0 value, bringing it closer to the locally measured one. This can be appreciated in Fig. 3,
where we show the results of Planck 2015 for a model where Ne↵ is an additional free parameter and
the extra radiation behaves like neutrinos. In the H0-Ne↵ parameter space we show the joint 68% and
95% confidence regions for Planck 2015 data (blue) and Planck 2015 + BAO data (green) obtained
from the Planck team’s public chains, both using polarization and temperature power spectra (left)
or just temperature power spectrum and lowP (right). The vertical bands correspond to the local H0

measurement [20].
A high value of Ne↵ (�Ne↵ ⇠ 0.4) would alleviate the tension in H0 and still be allowed by

the Planck lowP and high ` temperature power spectra and BAO data as pointed out in [20]. The
“preliminary” high ` polarization data, disfavours such large �Ne↵ (at ⇠ 2� level), as polarization
constrains strongly the e↵ective number of relativistic species.

This is however not the full story. State-of-the-art CMB data have enough statistical power to
measure not just the e↵ect of thisNe↵ on the expansion history but also on the perturbations. Neutrino
density/pressure perturbations, bulk velocity and anisotropic stress are additional sources for the
gravitational potential via the Einstein equations (see e.g., [61–63]). The e↵ect on the perturbations
is described by the e↵ective parameters sound speed and viscosity c2s, c

2
vis [64–67]. Neutrinos have

{c2s, c2vis} = {1/3, 1/3}, but other values describe other physics, for example a perfect relativistic
fluid will have {1/3, 0} and a scalar field oscillating in a quartic potential {1, 0}. Di↵erent values
of c2s and c2vis would describe other dark radiation candidates. This parametrisation is considered
flexible enough for providing a good approximation to several alternatives to the standard case of
free-streaming particles e.g., [68, 69].

Recent analyses have shown that if all Ne↵ species have the same e↵ective parameters c2s, c
2
vis,

Planck data constraints are tight [3, 70]: c2s = 0.3240 ± 0.0060, c2vis = 0.327 ± 0.037 (with fixed
Ne↵ = 3.046; Planck 2015). Moreover, the Ne↵ constraints are not significantly a↵ected compared to
the standard case: Ne↵ = 3.22+0.32

�0.37 ([70]) against Ne↵ = 3.13± 0.31 (Planck 2015) at 68% confidence

3The number of (active) neutrinos species is 3, the small correction accounts for the fact that the neutrino decoupling
epoch was immediately followed by e+e� annihilation.
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ハッブル定数 (H0) 問題
Bernal, Verde & Riess (2016) • 近傍 (h~0.73)

   とCMB (h~0.68)
   のH0の矛盾
   (~3σ程度)

• 系統誤差？
   new physics？

• 精確なH0の測定
   は今後ますます
   重要！

近傍距離はしごの
H0測定 (Riess et al. 2016)

CMBゆらぎ
によるH0推定

(Planck collab. 2016)



Time delay distance
12.5 Statistical Approaches to Cosmography from Lens Time Delays

Figure 12.13: Contours of key cosmological quantities that are constrained from CMB (upper left), BAO (upper
right), lensing time delay (lower left), and Supernovae Ia (lower right), which indicate the degeneracy direction from
each observation. For CMB and BAO, we plot contours of DA(zCMB = 1090)

p

⌦Mh2 and DA(zBAO = 0.35)
p

⌦Mh2,
respectively which are measures of the angular scale of the acoustic peak at two redshifts. For time delays, �t, we
show contours of D ⌘ DlDs/Dls, where we adopted zl = 0.5 and zs = 1.8. Contours of SNe are simply constant
luminosity distance, DL(zSNe = 0.8). All the contours are shown on the ⌦M -w plane, assuming a flat Universe.

need a complete sample of lenses for this measurement: we can work with any ensemble of lenses,
provided we understand the form of the distributions of its members’ structural parameters.

The basic idea is to construct a statistical model for the likelihood function Pr(d|q,p), where the
data d concisely characterize the image configurations and time delays of all detected lenses, while
q represents parameters related to the lens model (the density profile and shape, evolution, mass
substructure, lens environment, and so on), and p denotes the cosmological parameters of interest.
We can then use Bayesian statistics to infer posterior probability distributions for cosmological

433

LSST Science Book (astro-ph/0912.0201)

• 時間の遅れは三つ
   の距離の比を測定
   (time delay distance)

• 他の宇宙論パラメ
   ータ依存性もある

• 他の距離測定法と
   比べても相補的

(1 + zl)
DA(zl)DA(zs)

DA(zl, zs)



困難: 質量モデルの不定性

• 四重像クエーサー重力
   レンズ PG1115+080

   の質量モデリング (glafic)

• 最終的なH0の制限は
   仮定する質量モデルに
   非常に強く依存する

(仮定した質量モデルの名前)



(1) 「golden lens」方式
     多くの観測的制限 (速度分散、ホスト銀河 ...) 
     を使い個々のレンズ天体に対しポテンシャル
     を精密に決め H0 測定 

(2) 「ensemble of lenses」 方式
      多くのレンズ系を統計的に組み合わせ、レン
      ズポテンシャルの依存性を平均化することで
      減少させる、ないし見積もり H0 測定　　

どうやって克服するか



「Ensemble of lenses」方式
Oguri ApJ 660(2007)1
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Fig. 8.— Statistical constraint on the Hubble constant from
16 time delay quasars (40 image pairs). Thick solid line indicates
goodness-of-fit parameter from all 16 lens systems plotted as a
function of the Hubble constant h. The resulting Hubble constant
is h = 0.70+0.03

−0.02 at 68% confidence and h = 0.70+0.09
−0.05 at 95% confi-

dence. The Hubble constant estimated using jackknife resampling
has a larger error, h = 0.70 ± 0.06 at 68% confidence (see text for
details). Thin solid lines show goodness-of-fit parameter for each
lens system.

where Rij,obs, θij,obs, Ξobs are those for this specific image
pair listed in Table 1, and G(Ξ|Ξobs(h)) indicates the
Gaussian distribution with median Ξ = Ξobs. Note that
calculating Ξobs from observed time delays require the
Hubble constant h, hence Lp is a function of h. Then
we compute the effective chi-square by summing up the
logarithm of the likelihoods:

χeff(h) =
∑

quasar

1

np

∑

pair

[−2 lnLp(h)] . (26)

The first summation runs over lens systems, whereas the
second summation runs over image pairs for each lens
system; the number of pairs for each lens is denoted by
np. Note that np = 1 all double lens systems, and a
quadruple lens system should have np ≤ 4C2 = 6 depend-
ing on how many time delays have been observed for the
lens system. The factor 1/np was introduced such that all
lens systems have equal weight on the effective chi-square
irrespective of the number of image pairs. We derive the
best-fit value and its error of h by the standard way using
a goodness-of-fit parameter ∆χeff ≡ χeff − χeff(min).

We show our result in Figure 8. The Hubble constant
measured from the combination of all 16 lens systems
is h = 0.70+0.03

−0.02 at 68% confidence and h = 0.70+0.09
−0.05 at

95% confidence. The obtained value is in good agreement
with other estimates, such as the local distance measure-
ment using Cepheid calibration (Freedman et al. 2001)
and the CMB anisotropy (Tegmark et al. 2006; Spergel
et al. 2007). The constraint from each lens system, which
is plotted in Figure 8, is summarized in Table 2.

We also derive the Hubble constant using the jackknife
resampling by regarding each 16 lens system as a subsam-
ple. The result h = 0.70±0.06 at 68% confidence has the
same mean but larger error than that estimated from the
effective chi-square. There are several possible source of
this difference. One is the underestimate of the width of
the input distributions. In particular, many of the time

TABLE 2
Hubble Constant from Each Lens

System

Lens Name h (1σ range)

B0218+357 0.21 (–)
HE0435−1223 1.02 (0.70–1.39)
RXJ0911+0551 0.96 (0.75–1.21)
SBS0909+532 0.84 (0.47–)
FBQ0951+2635 0.67 (0.56–0.81)
Q0957+561 0.99 (0.82–1.17)
HE1104−1805 1.04 (0.92–1.22)
PG1115+080 0.66 (0.49–0.84)
RXJ1131−1231 0.79 (0.59–1.03)
B1422+231 0.16 (–0.36)
SBS1520+530 0.53 (0.46–0.61)
B1600+434 0.65 (0.54–0.77)
B1608+656 0.89 (0.77–1.20)
SDSS J1650+4251 0.53 (0.44–0.63)
PKS1830−211 0.88 (0.58–)
HE2149−2745 0.69 (0.57–0.82)
All 0.70 (0.68–0.73)

Note. — The Hubble constant and
its error are estimated from the effective
chi-square.

delay quasar systems has been claimed to be affected by
lens galaxy environments (e.g., Morgan et al. 2005; Fass-
nacht et al. 2006; Momcheva et al. 2006; Williams et al.
2006; Auger et al. 2007), and thus our input strength of
external shear might be somewhat smaller than the true
one (see also discussion in §7). Another possible source
is the non-Gaussianity of measured time delays: In equa-
tion (25) we assumed the Gaussian distribution for the
measurement uncertainties of time delays, but sometimes
they are quite different from the Gaussian distribution.4

We note that in our method we can in principle include
non-Gaussianity by just replacing G(Ξ) in equation (25)
with any appropriate probability distributions, as long
as we know such distributions.

7. DISCUSSIONS AND CONCLUSION

In this paper, we have studied time delays between
multiply imaged quasars. Adopting the reduced time de-
lay, which is a measure of how the lens potential is com-
plicated compared with the simple isothermal form, we
have explored the dependence of time delays on various
complex structure of lens potentials such as external per-
turbations, non-isothermality, and substructures. The
distribution of time delays has been studied as a func-
tion of image configuration which we characterize using
two dimensionless quantities, the asymmetry and open-
ing angle of an image pair. We have pointed out that the
sensitivity on lens potentials is quite dependent on the
image configuration. For instance, more symmetric im-
age pairs are more affected by a small change of the lens
potential. Image pairs with smaller opening angles are
also more sensitive to lens potentials. In particular time
delays of close image pairs are very sensitive to higher-
order external perturbations and substructures that are
very hard to be constrained from mass modeling even for

4 Among time delays listed Table 1, those of SDSS J1650+4251
and B1422+231 could be significantly different from the true values
(C. S. Kochanek, private communication). We perform the same
analysis excluding these two systems and find the Hubble constant
to be h = 0.70+0.03

−0.04 at 68% confidence from the effective chi-square.
Therefore our result is not biased significantly by these systems.

• アイデア: レンズポテンシャル
   の複雑さの時間の遅れの影響 
   を定量化する「reduced time 
   delay」を定義する 

• 平均をとるとレンズポテン
   シャル依存性が消せるという
    意味で便利な量

• 16の系での時間の遅れの観測
   から H0=68±6(stat.)±8(syst.)km/s/Mpc



「golden lens」方式
No. 1, 2010 DISSECTING THE GRAVITATIONAL LENS B1608+656. II. 207

under various assumptions stated in the Appendix that are
either justified in Paper I or will be shown to be valid in
Section 4.2. In essence, we find that the ACS data models that
give acceptable fits are all equally probable within their errors,
making conditioning on M5 (i.e., setting MD = M5, where
M5 is Model 5 in Paper I for the lensed image processing)
approximately equivalent to marginalizing over all models MD.

Furthermore, we can marginalize out the parameters of the
smooth lens model η separately:

P (γ ′|d, MD = M5) ∝
∫

dη P (d|γ ′, η, MD = M5)

· Pno ACS(γ ′) P (η). (30)

(See the Appendix for details of the assumptions involved.) We
see that the resulting PDF, P (γ ′|d, MD = M5), can itself be
treated as a prior on the slope γ ′. Without the ACS data d, this
distribution will default to the lower level prior Pno ACS(γ ′). For
the rest of this section, we refer only to the generic prior P (γ ′),
keeping in mind that this distribution may or may not include the
information from the ACS data. This will allow us to isolate the
influence of the ACS data on the final results, when we compare
the PDF in Equation (30) with some alternative choices of P (γ ′).

For the velocity-dispersion likelihood, the predicted velocity
dispersion σ P as a function of the parameters described in
Section 3.1 is

σ P = σ P(Ωm, ΩΛ, w, γ ′, κext, rani|zd, zs, reff, REin), (31)

where the effective radius, reff , the Einstein radius, REin, and the
mass enclosed within the Einstein radius, MEin, are fixed. The
effective radius is fixed by observations, and REin and MEin are
the quantities that lensing delivers robustly. The uncertainty in
the dynamics modeling due to the error associated with reff , REin,
and MEin is negligible compared to the uncertainties associated
with κext. The likelihood function for σ is a Gaussian:

P (σ |Ωm, ΩΛ, w, γ ′, κext, rani) = 1
√

2πσ 2
σ

exp
[
− (σ − σ P)2

2σ 2
σ

]
.

(32)
Finally then, we have the following simplified version of

Equation (24), where the posterior PDF has been successfully
compartmentalized into manageable pieces:

P (π |∆t, d, σ ) ∝
∫

dγ ′ dκext drani

· P (∆t|zd, zs,π , γ ′, κext, MD = M5)
· P (σ |Ωm, ΩΛ, w, γ ′, κext, rani)
· P (γ ′) P (κext) P (rani) P (π ). (33)

Sections 4–7 address the specific forms of the likelihoods and
the priors in Equation (33). In particular, in the next section, we
focus on the lens modeling of B1608+656 which will justify the
assumptions mentioned above and provide both the time-delay
likelihood and the ACS P (γ ′) prior.

4. LENS MODEL OF B1608+656

The quadruple-image gravitational lens B1608+656 was
discovered in the Cosmic Lens All-Sky Survey (CLASS; Myers
et al. 1995; Browne et al. 2003; Myers et al. 2003). Figure 1 is
an image of B1608+656, showing the spatially extended source
surface brightness distribution (with lensed images labeled by

D
G1

C

A

B

G2

1"

Figure 1. HST ACS image of B1608+656 from 11 orbits in F814W and 9 orbits
in F606W. North is up and east is left. The lensed images of the source galaxy
are labeled by A, B, C, and D, and the two lens galaxies are G1 and G2. 1 arcsec
corresponds to approximately 7 kpc at the redshift of the lens.

A, B, C, and D) and two interacting galaxy lenses (labeled
by G1 and G2). The redshifts of the source and the lens
galaxies are, respectively, zs = 1.394 (Fassnacht et al. 1996) and
zd = 0.6304 (Myers et al. 1995).10 We note that the lens galaxies
are in a group with all galaxy members in the group lie within
±300 km s−1 of the mean redshift (Fassnacht et al. 2006a). Thus,
even a conservative limit of 300 km s−1 for the peculiar velocity
of B1608+656 relative to the Hubble flow would only change
D∆t by 0.5%. As we will see, this is not significant compared to
the systematic error associated with κext. This system is special in
that the three relative time delays between the four images were
measured accurately with errors of only a few percent: ∆tAB =
31.5+2.0

−1.0 days, ∆tCB = 36.0+1.5
−1.5 days, and ∆tDB = 77.0+2.0

−1.0 days
(Fassnacht et al. 1999, 2002). The additional constraints on
the lens potential from the extended source analysis and the
accurately measured time delays between the images make
B1608+656 a good candidate to measure H0 with few-percent
precision. However, the presence of dust and interacting galaxy
lenses (visible in Figure 1) complicate this system. In Paper I,
we presented a comprehensive analysis that took into account
the extended source surface brightness distribution, interacting
galaxy lenses, and the presence of dust for reconstructing the
lens potential. In the following subsections, we summarize the
data analysis and lens modeling from Paper I, and present the
resulting Bayesian evidence values (needed in Equation (30))
from the lens modeling.

4.1. Summary of Observations, Data Analysis, and Lens
Modeling in Paper I

Deep HST ACS observations on B1608+656 in F606W and
F814W filters were taken specifically to obtain high signal-to-
noise ratio images of the lensed source emission.

In Paper I, we investigated a representative sample of PSF,
dust, and lens galaxy light models in order to extract the Einstein
ring for the lens modeling. Table 1 lists the various PSF and dust
models, and we refer the readers to Paper I for details of each
model.

The resulting dust-corrected, galaxy-subtracted F814W im-
age allowed us to model both the lens potential and source
surface brightness on grids of pixels based on an iterative and

10 We assume that the redshift of G2 is the same as G1.

• クエーサーの四重像に加え
   他の制限を足してポテン
   シャルを決める
   − レンズ銀河の速度分散
   − 母銀河 (アーク)
   − レンズ環境効果

B1608+656 (Suyu et al. 2010)



レンズ銀河の速度分散
Faber & Jackson (1976)

r

ρ(r)

速度
分散

強い
重力レンズ

スペクトルの
幅から銀河の
速度分散 (星の
運動速度) 測定

• 強い重力レンズ (~Re) よりも典型的に内側 (<0.5Re)

   の質量を測定 → 動径密度分布を制限
    (e.g., Treu & Koopmans 2003, Koopmans et al. 2006, ...)



重力レンズを受けた母銀河
PG1115+080 (Kochanek 2006)• クエーサーは銀河の

   活動銀河核
→母銀河も重力レンズ
   効果を受ける

• 広がった母銀河アーク
   からレンズポテンシャ
   ルの構造をより強く
   制限できる 

(e.g., Kochanek et al. 2001)



レンズ環境効果 (κext)
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Fig. 4.— Probability distribution for the external convergence
κext obtained from combining results of galaxy number counts
around B1608+656 with results from ray-tracing through the Mil-
lennium Simulation. Compared are the distribution along lines
of sight with a relative galaxy number density ngal/⟨ngal⟩ =
2.00 ± 0.05 (solid line) to the distribution along all lines of sight
(dotted line).

The MS prior therefore suggests that ensembles of iso-
lated strong lenses will yield estimates of cosmological
parameters that are not strongly biased by line-of-sight
structures. The PDF in Figure 3 gives us an idea of by
how much individual lenses’ line-of-sight κext values vary,
and hence an estimate of the uncertainty on H0 due to
this structure. In the absence of any other information,
we can assign the Millennium Simulation PDF as a prior
on κext in order to limit the possible values of external
convergence to those likely to occur. This assignment has
the effect of adding an additional uncertainty of ∼ 0.04
in κext, with no systematic shift in κext.

6.2. Combining galaxy density observations with
ray-tracing simulations

The prior discussed in the preceding section does not
take into account any information about the environment
of B1608+656. Here, we combine knowledge of the lens
environment with ray-tracing to obtain a more informa-
tive prior on the external convergence.
Fassnacht et al. (2009) compared galaxy number

counts in fields around strong galaxy lenses, including
B1608+656, with number counts in random fields and in
the COSMOS field. Among other measures, they used
the number of galaxies with apparent magnitude 18.5 ≤
mF814W < 24.5 in the F814W filter band in apertures
of 45 ′′ radius (300 kpc at the redshift of B1608+656) to
quantify the galaxy number density ngal projected along
lines of sight. They found that the distribution of ngal for
lines of sight containing strong lenses is not very different
from that for random lines of sight. However, B1608+656
lies along a line of sight with a galaxy density ngal that is
about twice the mean over random lines of sight, ⟨ngal⟩.
A positive κext bias can arise through Poissonian fluctu-
ations that are present in the number of groups along the
line of sight in the observed sample of strong lenses.
We can use this measurement of galaxy number den-

sity in the B1608+656 field to generate a more infor-
mative prior PDF for κext. As for the MS prior in
the previous section, we use the ray-tracing through
the MS together with the semi-analytic galaxy model
of De Lucia & Blaizot (2007) to quantify the expected
external convergence κext for lines of sight with a given
relative overdensity ngal/⟨ngal⟩. Dividing out the abso-

lute number of galaxies in the field accounts for differ-
ences due to the particular set of cosmological parame-
ters used by the Millennium Simulation and inaccuracies
in the galaxy model: We assume that differences in the
relative overdensity between the MS cosmology and the
true one are small.
We generate 32 simulated fields of 4×4 deg2 on the sky

containing the positions and apparent magnitudes15 of
the model galaxies at redshifts 0 < z < 5.2 together with
maps of the convergence κ to source redshift zs = 1.39.
The galaxy positions and magnitudes in the simulated
fields are converted into maps of the galaxy density ngal.
We then select all lines of sight with relative overdensity
1.95 ≤ ngal/⟨ngal⟩ < 2.05 and compute the distribution
of the convergence along these lines of sight. The result-
ing convergence distribution (shown in Figure 4) is then
used as prior distribution for the external convergence
κext, which we denote as the “OBS” (observations and
MS) prior.
The convergence computed in this way is not strictly

speaking external convergence, since (i) we do not sub-
tract any contribution from any primary strong lens, (ii)
we take all lines of sight and not just those to strong
lenses. We are instead building on one of the results of
the previous section and assume that the distribution of
external convergences is very similar to the distribution
of convergences along random lines of sight.
Where this approach becomes inappropriate is where

a ray passes close to a galaxy center, and is hence asso-
ciated with a very large convergence. Assuming such a
line of sight as foreground/background for a strong lens
galaxy essentially creates a lens system with two or more
strong deflectors. These sightlines correspond to com-
pound lenses such as SDSS J0946+1006 (Gavazzi et al.
2008), but not to B1608+656. However, the tail of high
convergence values does not pose a problem here: as we
will see in Section 8.1 below, the high external conver-
gence is rejected by the dynamics modeling. We expect
the mean and width of the PDF in Figure 4 to repre-
sent well the possible values of κext for a field that is
over-dense in galaxy number by a factor of two.
Our OBS κext distribution agrees with earlier estimates

from Fassnacht et al. (2006a), who identified and mod-
eled the 4 groups along the line of sight to B1608+656 us-
ing various mass assignment recipes. In both approaches,
we and Fassnacht et al. (2006a) are concerned primarily
with extracting information on the external convergence
and not the external shear. If we were to estimate the ex-
ternal convergence by assigning masses and redshifts to
all objects in the B1608+656 field, and then ray tracing
through the resulting model mass distribution, the exter-
nal shear as required in the strong lens modeling would
serve as an important calibrator for the external con-
vergence. Such a procedure is beyond the scope of this
paper, and we defer it to a future publication (Blandford
et al., in preparation). However, we do find (by comput-
ing the distribution of external shears in MS fields with
different external convergences) that the magnitude of
the external shear required by the strong lens modeling

15 The model galaxy catalogs do not provide F814W magni-
tudes. We simply approximate mF814W by combining SDSS i-band
and z-band magnitudes to get mF814W = ximi + (1− xi)mz with
xi = 0.5. We have checked that our results do not depend strongly
on xi ∈ [0, 1].

Suyu et al. (2010)

• 視線方向の積分した密度の揺らぎ (方向による
   違い)の効果は convergence (κext) で表される

• mass-sheet縮退により
   質量モデリングでは
   決定できない
   (現在最も重要な誤差
    要因の一つ)

• 複数のレンズ系で平均
   をとる、周辺の銀河の
   number countsから推定、等



H0LiCOW
PI: Sherry Suyu (MPA)

done done doneanalyzinganalyzing

• 複数の重力レンズクエーサーの詳細観測 
   (HST, Keck, Subaru, ...)、解析から H0 を測定

• 5つの系を観測、すでに3つの系の解析結果
   が出版されている

WFI2033-4723 RXJ1131-1231 HE0435-1223 HE1104-1805 B1608+656



現在の制限

Bonvin et al. (2017) [flat, parameters: H0, Ωm]

• ~4%でH0を制限、Planckよりも高めの値



時間の遅れ: まとめ
• 時間の遅れは H0 を決定する貴重な手法

• 一番の困難は質量モデルとの縮退

• 詳細な質量モデリング、ないし適切な統計的
  取り扱いにより克服

• 現行、および将来のサーベイ観測 (HSC, DES, 
   LSST, ...) により重力レンズ系の数も増えさらに
   強い制限が課せられると期待出来る



ダークマターモデルの観測的検証
• 現在の標準理論（仮定）：
   冷たい無衝突ダークマター
   (collisionless CDM モデル)

• その性質の仮定はダーク
   マター分布に本質的に重要
   ー NFW分布
   ー 大きな非球対称性
   ー 細かいサブ構造
        (substructre/subhalo)

http://www.mpa-garching.mpg.de/galform/millennium/



矮小/衛星銀河dozens seen

“Via Lactea” Simulation

1000’s of satellites predicted

Pan-ANDromeda Archeological Survey 
(PAndAS)

The “Missing Satellites” Problem

Fornax 矮小銀河 アンドロメダ銀河 (M31)
Pan-Andromeda Archeological Survey

ΛCDMシミュレーションに見られるsubahloに対応



ΛCDMの小スケール問題 (I)
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Fig. 8.— The inner slope of the dark matter density profile plot-
ted against the radius of the innermost point. The inner density
slope α is measured by a least squares fit to the inner data point as
described in the small figure. The inner-slopes of the mass density
profiles of the 7 THINGS dwarf galaxies are overplotted with earlier
papers and they are consistent with previous measurements of LSB
galaxies. The pseudo-isothermal model is preferred over the NFW
model to explain the observational data. Gray symbols: open cir-
cles (de Blok et al. 2001); triangles (de Blok & Bosma 2002); open
stars (Swaters et al. 2003). See Section 6.3 for more discussions.

Using Eq. 15, we directly convert the total rotation
curves into mass density profiles. Here, we use the mini-
mum disk hypothesis (i.e., ignores baryons). As already
discussed in Section 5.1, our galaxies are mostly dark
matter-dominated and this “minimum disk” assumption
is a good approximation in describing their dynamics.
Particularly useful is the fact that it gives a hard upper
limit to the dark matter density.
In this way, we derive the mass density profiles of the

7 THINGS dwarf galaxies and present them in the Ap-
pendix. We also derive the mass density profiles using
the scaled rotation curves derived assuming minimum
disk in Fig. 6, and plot them in Fig. 7. The best fits of
the NFW and pseudo-isothermal models are also over-
plotted. Despite the scatter, the derived mass density
profiles are more consistent with the pseudo-isothermal
models as shown in Fig. 7.
To quantify the degree of concentration of the dark

matter distribution towards the galaxy center, we mea-
sure the logarithmic inner slope of the density profile.
For this measurement, we first need to determine a
break-radius where the slope changes most rapidly. The
inner density slope is then measured by performing a
least squares fit to the data points within the break-
radius. For the uncertainty, we re-measure the slope
twice, including the first data point outside the break-
radius and excluding the data point at the break radius.
The mean difference between these two slopes is adopted
as the slope uncertainty ∆α. The measured slope α
and slope uncertainty ∆α of the galaxies are shown in
the Appendix. In addition, we overplot the mass den-
sity profiles of NFW and pseudo-isothermal halo mod-

els which are best fitted to the rotation curves of the
galaxies. From this, we find that the mean value of the
inner density slopes for the galaxies is α=−0.29 ± 0.07
(and −0.27 ± 0.07 without Ho I which has a low incli-
nation. See Section 3.4 for details). These rather flat
slopes are in very good agreement with the value of
α = −0.2±0.2 found in the earlier work of de Blok et al.
(2001; see also de Blok & Bosma 2002) for a larger num-
ber of LSB galaxies. They are, however, in contrast with
the steep slope of ∼−0.8 predicted by ΛCDM simulations
(e.g., Stadel et al. 2009; Navarro et al. 2010) as well as
those by the classical simulations (e.g., Navarro, Frenk &
White 1996, 1997). This implies that the sample galaxies
show slightly increasing or even constant density profiles
towards their centers.
We also examine how the mass model differs when it

is based on the hermite h3 rotation curve instead of the
bulk one. For this, we use IC 2574 which shows strong
non-circular motions close to the center. As shown in the
“Mass density profile” panel of Fig. A.3, the mass den-
sity profile derived using the hermite h3 rotation curve
is found to be slightly lower than that from the bulk ro-
tation curve at the central regions. This is mainly due
to the lower hermite h3 rotation velocity, resulting in
smaller velocity gradients ∂V /∂R in Eq. 15 and thus
smaller densities. The measured inner density slope is
α=0.00± 0.19 which is similar, within the error, to that
(α=0.13± 0.07) based on the bulk rotation curve. This
supports earlier studies that suggest that the effect of
systematic non-circular motions in dwarf galaxies is not
enough to hide the central cusps (e.g., Gentile et al. 2004;
Trachternach et al. 2008; van Eymeren et al. 2009).
In Fig. 8, we plot the logarithmic inner density slope

α against resolution of a rotation curve. At high resolu-
tions (Rin < 1 kpc) the slopes of the NFW and pseudo-
isothermal halo models can be clearly distinguished but
at low resolutions (Rin ∼1 kpc) the slopes of the two
models are approximately equal (de Blok et al. 2001).
Because of their proximity (∼4 Mpc) and their highly-
resolved rotation curves, the innermost radius of the ro-
tation curves that can be probed for our galaxies is about
0.1-0.2 kpc. We also overplot the theoretical α−Rin rela-
tions of NFW and pseudo-isothermal halo models as solid
and dotted lines, respectively. The highly-resolved rota-
tion curves of our galaxies (i.e., Rin ∼0.2 kpc) deviate
significantly from the prediction of NFW CDM models.
In particular, around Rin ∼0.1 kpc where the predictions
of the two halo models are clearly distinct, the α − Rin
trend of our galaxies is more consistent with those of
pseudo-isothermal halo models.

7. CONCLUSIONS

In this paper we have presented high-resolution mass
models of the 7 dwarf galaxies, IC 2574, NGC 2366,
Ho I, Ho II, DDO 53, DDO 154 and M81dwB from the
THINGS survey, and examined their dark matter distri-
bution by comparison with classical ΛCDM simulations.
The THINGS high-resolution data significantly reduce
observational systematic effects, such as beam smear-
ing, center offset and non-circular motions. When deriv-
ing the rotation curves, we used various types of veloc-
ity fields, such as intensity-weighted mean, peak, single
Gaussian, hermite h3 and bulk velocity fields, and com-
pared the results. In particular the bulk velocity field

Oh et al. (2011)
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Fig. 7.— The cumulative velocity function of the dark matter
satellites in the three galactic halos (solid lines compared to the
average cumulative velocity function of dwarf galaxies around the
Milky Way and Andromeda galaxies (stars). For the objects in
simulations Vcirc is the maximum circular velocity, while for the Lo-
cal Group galaxies it is either the circular velocity measured from
rotation curve or from the line-of-sight velocity dispersion assum-
ing isotropic velocities. Both observed and simulated objects are
selected within the radius of 200h−1 kpc from the center of their
host. The dashed lines show the velocity function for the luminous
satellites in our model described in § 6. The minimum stellar mass
of the luminous satellites for the three hosts ranges from ≈ 105 M⊙

to ≈ 106 M⊙, comparable to the observed range.

larger than a given value, for the objects located within
200h−1 kpc of their host halo. The figure compares the
CVFs for the DM satellites and observed satellites of the
MW and Andromeda 5 and highlights the “missing satel-
lite problem” (Kauffmann et al. 1993; Klypin et al. 1999b;
Moore et al. 1999a): a large difference in the number of
dwarf-size DM satellites in simulations and the observed
number of dwarfs in the Local Group.

Figure 8 shows the normalized cumulative radial distri-
bution of the DM satellites compared to the radial distri-
bution of satellites around the Milky Way within the same
radius. The Local Group data is from the compilation of
Grebel et al. (2003). The figure clearly shows that the spa-
tial distribution of dwarf galaxies around the Milky Way
is more compact than the distribution of the DM popu-

orbits and the development of the tangentially-biased dispersion in
the outer parts. A similar result has been found by Kazantzidis et al.
(2004) and Moore et al. (2003). The solution of the Jeans equation
for Vm is sensitive to the exact value of the anisotropy parameter
(Zentner & Bullock 2003; Kazantzidis et al. 2003).
5 We use the circular velocities compiled by Klypin et al. (1999b)
with updated values of circular velocity for the Large and Small
Magellanic Clouds of Vm = 50 km s−1 and 60 km s−1, respectively
(van der Marel et al. 2002)

Fig. 8.— The fraction of satellites within a certain distance from
the center of their host galaxy. The solid lines show distributions of
the ΛCDM satellites in the three galactic halos, while the connected
stars show the distribution of dwarf galaxies around the Milky Way.
The figure shows that radial distribution of observed satellites is
more compact than that of the overall population of dark matter
satellites. The dashed lines show distributions for the luminous
satellites in our model (§ 6). The population of luminous satellites
is the same in this and previous figures.

lation. The median distance of observed satellites within
200h−1 kpc is 60h−1 kpc and 85h−1 kpc for the MW and
M31, respectively. For the DM satellites the correspond-
ing median distances are 116h−1 kpc, 121h−1 kpc, and
120h−1 kpc. Although the median for M31 satellites is
smaller than that of the DM satellites, their radial distri-
butions are formally consistent. However, the comparison
with the M31 satellites is difficult at present because typ-
ical distance errors are ∼ 20 − 50 kpc (and ! 70 kpc for
some galaxies), comparable to the distance to the host.

For the MW satellites the typical distance errors are an
order of magnitude smaller and the comparison is consid-
erably more meaningful. The Kolmogorov-Smirnov (KS)
test gives probability of (6−8)×10−4 that the MW satel-
lites are drawn from the same radial distribution as the
DM satellites. This has also been pointed out recently by
Taylor et al. (2003), who compared the spatial distribution
of the MW satellites to results of their semi-analytic model
of galaxy formation. Thus, in addition to the vastly dif-
ferent abundances of the observed and predicted satellites,
there is a discrepancy in the radial distribution. Models
that aim to reproduce the abundance of the LG satellites
should therefore be able to reproduce the radial distribu-
tion as well.

6. a model of star formation in dwarf halos

missing satellite 問題

Kravtsov et al. (2004)



ΛCDMの小スケール問題 (II)
The Milky Way’s bright satellites in ⇤CDM 9

Figure 6. Left : Observed luminosity functions for the Milky Way and M31 (thick solid lines) compared to abundance matching predictions
based on the Aquarius simulations (thin lines, with Aq-E plotted in magenta; M?/LV = 2 is assumed). Right : Values of V

max

computed
in Sec. 4.1 for the nine luminous Milky Way dwarf spheroidals (square symbols with errors), along with V

max

(z = 0) values of the
subhalos with MV < �8 (magnitudes are assigned by abundance matching) from the halo that best reproduces the luminosity function
in the left panel (Aq-E). While numerical simulations combined with abundance matching reproduces the luminosity function of MW
satellites, the structure of the dwarf spheroidals hosts’ in this model does not match observations: the simulated subhalos are much more
massive (have larger values of V

max

) than the dSphs.

are systematically higher than those of the MW dSphs. It
is therefore not possible to simultaneously match the abun-
dance and structure of the MW dSphs in standard galaxy

formation models based on dissipationless ⇤CDM simula-

tions. While there are many subhalos that match the struc-
ture of the bright MW dSphs, these are not the subhalos
that are predicted to host such galaxies in ⇤CDM.

The observed densities of MW satellites are very di�-
cult to reconcile with ⇤CDM-based galaxy formation mod-
els, where the stellar content of a galaxy is strongly cou-
pled to V

infall

. To highlight the problem, we plot the in-
ferred star formation e�ciency – ✏? ⌘ M?/(fb Minfall

), where
fb = ⌦b/⌦m is the universal baryon fraction – as a function
of M

infall

in Fig. 7. The ellipses show 1� uncertainties (note
that the direction of the ellipses is due to the inverse cor-
relation between ✏? and M

infall

at fixed M?). This relation
is well-constrained at z = 0 in the context of abundance
matching for M? > 108.3 M� (approximately the complete-
ness limit of the Li & White (2009) stellar mass function,
corresponding to M

halo

= 6 ⇥ 1010 M�). The relation for
M? lower than the SDSS completeness limit is extrapolated
using a power law (dashed portion of abundance matching
lines).

The M? �M
halo

relation cannot be tested statistically
on mass scales relevant for the dSphs at present, but it is
immediately apparent that galaxy formation must proceed
di↵erently at M

halo

. 1010 M� than for larger systems if
simulated subhalos accurately reflect the densities of the
halos of dSphs as they exist the Universe. For example, the
most luminous dSph of the MW, Fornax, has an inferred star

formation e�ciency of ✏? ⇡ 0.2, a value that is approached
only at the scale of MW-mass halos. Ursa Minor and Draco,
which are ⇠ 40 � 80 times less luminous than Fornax, sit
in halos that are comparable or slightly more massive, and
therefore have inferred e�ciencies of closer to ✏? = 0.002.

5 DISCUSSION

Sections 3 and 4 have demonstrated that the structure and
abundance of bright Milky Way satellites are not consis-
tent with populating the most massive subhalos in hosts of
M

vir

⇡ (1� 2)⇥ 1012 M�. In this Section, we discuss some
possible remedies for this problem, ranging from downward
revisions of the MW’s dark matter halo mass (Sec. 5.1) to
changes to ⇤CDM (Sec. 5.4).

5.1 Mass of the Milky Way

The simulated halos used in this paper range from M
vir

=
9.5 ⇥ 1011 to M

vir

= 2.2 ⇥ 1012 M�. The true mass of the
Milky Way is still a matter of significant uncertainty, how-
ever. The apparent lack of massive subhalos might be under-
standable if the Milky Way is significantly less massive than
this simulated range. Here we summarize recent estimates
of the Milky Way halo mass.

• halo tracers

Xue et al. (2008) used blue horizontal-branch stars from
the Sloan Digital Sky Survey, combined with mock obser-
vations of hydrodynamical simulations of Milky Way-like
galaxies, to find M

vir,MW

= 1.0+0.3
�0.2 ⇥ 1012 M�, and M(<

c� 2012 RAS, MNRAS 000, 1–17

too-big-to-fail 問題

Boylan-Kolchin et al. (2012)

N体シミュレーションの
予言 (abundance matching)

観測された衛星銀河

明るい衛星銀河が
思ったほど重くない



ΛCDMの小スケール問題 (III)
• 様々な問題
   − 衛星/矮小銀河の数が少なすぎる?

   − 衛星/矮小銀河の中心密度分布がコア的?

   − 明るい衛星銀河が期待より軽い?

• 解決法
   (1) ダークマターモデルを変える 
        (例えば Warm Dark Matter)
   (2) バリオンの物理によって説明する
        (フィードバック、最イオン化、星形成、、)



WDM

ハロー質量関数
dn/dM

M
ハロー質量関数

CDM

1014M☉109M☉

• CDMの描像が正しければ
   ハロー質量関数は低質量
   まで冪で伸びている
    (質量関数 dn/dM ~ M-2)

• 非常に低質量ではポテン
   シャルも浅く星形成せず
→ バリオン効果も小さい

• CDMの検証に非常に大切



重力レンズフラックス比異常
• クエーサー重力レンズ
   の質量モデリングでは
   像の位置はよく再現

• ただし複数像間のフラッ
  クス比はしばしば再現
  できない
→ レンズ銀河内のサブ
    構造の証拠？
     (Mao & Schneider 1998)

B1422+231 (CASTLES webpage)



 ! + �

↵ ! ↵+ �↵

µ�1 = (1� )2 � �2

µ�1 ! µ�1 � 2(1� )�� 2���

なぜフラックス比？
• 曲がり角は摂動に対し線形の寄与

• 増光率はもう少し複雑

高増光率の像では≪1 

小さい摂動が大きな効果を生みうる



Quasar microlensing

 

Quasar microlensing:
typical simulations

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Microlensing of distant Quasars”
J. Wambsganss

レンズ銀河内
の星でさえも
フラックス比
を変えうる



増光率のサイズ依存性

point massレンズ
Sersicソース θsrc=Re, n=1
ソース位置 β/θEin=0.1 

• 大きく広がったソース
   に対しては増光率は
   小さい (表面輝度保存)

• ソースサイズ θsrc<θEin   
   が重力レンズによる
   効率的な増光に必要

(computed by glafic)



クエーサーの放射領域

(from CALweb)

• 異なる波長の光は
   異なる領域からくる
   可視連続光 (~10-2pc)
   広輝線領域 (~1 pc)
   狭輝線領域 (~100 pc)
   ダストトーラス (>1pc)
   電波放射 (>1pc)

• サイズ依存性を利用しサブ構造による  
   重力レンズとquasar microlensingを分離



これまでの結果
– 15 –

0.001 0.01 0.1 1
0

0.05

0.1

0.15

0.2

0.25

0.001 0.01 0.1 1
0

0.05

0.1

0.15

0.2

0.25

Fig. 5.— Results for the observed lens sample with b = 0.′′001. The heavy solid lines show the

probability distributions assuming errors in the flux ratios of 5%, 10% and 20%. The points on

the curves mark the median surface density (triangles) and the regions encompassing 68.3% (1σ,

squares), and 95.4% (2σ, pentagons) of the probability. The dashed curves show the contributions

from the individual lenses for the 10% case. The region between the vertical lines is the range

of substructure mass fractions found in the Klypin et al. (1999) simulations. Normal satellite

populations, with 10−4 <∼ fsat <∼ 10−3, correspond to a region off the left edge of the figure.

Mid-IR Imaging of Quadruple Lenses 3

Fig. 1.— The quadruple lens systems, PG1115+080 (left) and B1422+231 (right), at 11.7 µm taken with COMICS/Subaru on 2004
May 5 and 6 (UT). The direction of the images is that the north is up and the east is left, and the pixel scale of them is 0.′′065 pixel−1.
These images have been smoothed with a Gaussian kernel of σ = 0.′′065 in order to improve their visual impression.

bandwidth are λc = 11.67 µm and ∆λ = 1.05 µm, re-
spectively. The chopping frequency was set 0.45 Hz with
a width of 10′′, then the target images were within the
field of view for both chopped positions. In addition
to the chop, the telescope position was nodded several
times during the observation. It was photometric except
for the first quarter of both nights, and the diffraction
core of point-spread function (PSF) could be seen. The
FWHM of PSF was 0.′′33 at small airmass. Since we
found some degradation of PSF for the images at large
airmass, we limited the data to those at small airmass,
≤ 1.6 for PG1115+080 and ≤ 1.4 for B1422+231. The
total exposure times of the available data were 1.8 hours
for PG1115+080 and 3.1 hours for B1422+231, respec-
tively. We also observed HD98118 and HD127093 for the
photometric standard stars (Cohen et al. 1999).

The images were reduced using IRAF 8. An image data
file consisted of 208 successive chopped frames and its ex-
posure time was 200.5 seconds. First, the sky background
of the frame of one chopped position was subtracted by
the frame of the other chopped position, and flat-field
correction was applied using a sky flat image that was
assembled by combining the frames of the other chopped
position and correcting global variation across the im-
age. Then two images with exposure time of 100 seconds
were obtained from an image data file by combining the
reduced frames of each chopped position. After that, in
order to reduce residual sky background around the tar-
gets, we fitted it with a low order function on the square
area of 8.3′′ × 8.3′′ around the target (masking center

8 IRAF is distributed by the National Optical Astronomy Ob-
servatories, which are operated by the Association of Universities
for Research in Astronomy, Inc., under cooperative agreement with
the National Science Foundation.

3.1′′×3.1′′) and subtracted it. The small systematic drift
of image positions due to the telescope tracking error was
fitted with smooth functions using the image positions of
QSO themselves which were detected marginally in each
100 seconds-exposure image, then those images were reg-
istered according to the fitted drift functions. In order
not to degrade the angular resolution by the sub-pixel
shifts during the image registration, drizzle (Fruchter &
Hook 2002) task was used to perform sub-pixel shifts and
re-sample with smaller size of pixels than the original,
where the task parameters were set as p = 1.0 (equiva-
lent to shift-and-add) and s = 0.5 (re-sampled with half
size of pixels). Finally, all available data were combined.

The resultant mid-infrared (λ = 11.7 µm) images
of the lensed QSOs, PG1115+080 and B1422+231, are
presented in Figure 1. The images presented in the
figure have been smoothed with a Gaussian kernel of
σ = 0.′′065 in order to improve their visual impression,
although photometries were carried out based on the im-
ages without any smoothing. As presented in Figure 1,
the lensed images A1 and A2 of PG1115+080 and A, B,
and C of B1422+231 were clearly detected and well sepa-
rated from each other. The minimum image separations,
0.′′48 and 0.′′50 for these lens systems, respectively, are
3.0 and 3.1 times larger than σr of PSF (σr = 0.′′16, as
will be described later). The faint lensed images B and
C of PG1115+080 were also detected.

3. RESULTS

3.1. Flux Ratio

The flux ratios between the lensed images of these
QSOs were estimated by PSF fitting photometry. We
assumed a circular, Gaussian radial profile for the PSF
model, and the relative positions between the images

B1422+231

MIR観測 (Chiba et al. 2005)
電波フラックス比解析 
(Dalal & Kochanek 2002)

• CDMとおよそコンシステント、但しサンプル数
   が少なくはっきりした結論は難しい



他のアプローチ:  アーク像解析
Three-dimensional Mapping of CDM Substructure 3

Fig. 1.— Simulated images of B1422+231 at submillimeter wavelengths without any perturbers (left) and with an SIS perturber (right)
for a Gaussian circular source with a standard deviation L = 2.5× 102 pc. A tidally truncated SIS with a mass of 2× 108M⊙ is put at the
center of a thick circle (top right) near the A image. The dashed circle represents a circle with the tidal radius centered at an SIS perturber.
The angular resolution is assumed to be 0.01 arcsec. Astrometric shifts in the tangential direction and those in the radial direction in the
coordinates aligned to the shear are represented by arrows.

(0, x02) is shifted to (0, x02 + ξ−1
2 ) (Inoue & Chiba 2004).

One can see in the top right panel in figure 1 that im-
age A, with positive parity κ ∼ 0.38, γ ∼ 0.47, is largely
stretched in the tangential direction by ξ−1

1 ∼ 6.7 and
slightly stretched in the radial direction by ξ−1

2 ∼ 0.92
with respect to the center of the perturber. The astro-
metric shift is significantly suppressed if the lensed im-
age is placed outside the tidal radius centered at the SIS
perturber, because the projected gravitational potential
decreases faster, as R−1, than an SIS without trunca-
tion, where R is the projected distance from the center
of the SIS. If the redshift and the one-dimensional veloc-
ity dispersion σ0 of the macrolens halo are known, then
we obtain the tidal radius as a function of the distance
from the center of the macrolens halo. From the observed
angular size for which the astrometric shifts are signif-
icantly suppressed, we can determine the distance from
the center of the lens halo, in principle.

Next, we show that a measurement of astrometric
shifts can break the degeneracy between substructure
mass and distance in the line-of-sight to the image. Con-
sider a halo at redshift z = zh and a clump (a substruc-
ture) in the foreground of the halo at redshift zc < zh.
Let Ds, Dch, Dcs, and Dh be the angular diameter dis-
tances to the source, between the clump and halo, be-
tween the clump and source, and to the halo, respec-
tively. Provided that the angle between the perturber
and the macrolensed image is sufficiently small in com-
parison with the Einstein radius of the macrolens θE , the
effective lens equation for an SIS plus a constant shear
and a constant convergence can be written as (Keeton
2003)

ỹ = (1− Γ̃)x −
x

|x|
, (5)

where ỹ = (1−βΓ)−1y, Γ̃ = 1− (1−βΓ)−1(1−Γ), and

(Inoue & Chiba 2005)

• 広がった重力レンズ
   アーク像にサブ構造
   の痕跡を探す 
   (e.g., Koopmans 2005)

• アークが細かい構造
   をもっていたほうが
   有利 (のっぺりだと
   痕跡みえず)



最近の進展: アルマ望遠鏡

NAOJ webpage

• チリに建設された大型
   電波干渉計

• 日米欧台の国際共同
   プロジェクト

• 2014年頃より本格稼働

• 大きな基線長により
   超高分解能観測が可能



アルマによるサブ構造探査

(Neal Dalal)

4 Hezaveh et al.

1 arcsec 1 arcsec

 

 

0 1 2 3 4
0 10 20 30 40 50

6
4
2
0

Fig. 1.— Top Left: The source model and the lensed images of a clumpy source. The black curves show the tangential and radial
caustics for the unperturbed macro model, and the red + symbol shows the location of an additional subhalo of mass M = 108M�. Top

Right: The dirty image observed by ALMA. Bottom Left: Residuals of channel integrated dirty images between a smooth model and
noisy perturbed observation. The greyscale is in units of noise rms. Bottom Right: Color residuals of the dirty images. The 50 observed
channels are mapped to RGB colors as illustrated by the colorbar. The y-axis of the colorbar shows the intensity in units of image noise
rms in each channel.

projected surface density

⌃(x, y) =

p

qv2

2G

✓
x2 + q2y2

r2
E

◆�1/2

(1)

where x and y are coordinates oriented along the princi-
pal axes of the surface density measured relative to the
lens centroid, v is the velocity dispersion along the line
of sight, q is the axis ratio, and r

E

is the Einstein radius
of the lens,

r
E

= 4⇡
v2

c2
Dd Dds

Ds
(2)

(Kormann et al. 1994). The SIE therefore is described by
5 parameters: the centroid xc, yc, velocity dispersion v,
axis ratio q, and orientation ✓q. We simulate lenses with
Einstein radius mass M

E

= ⇡⌃crr
2

E

of 4⇥1011M� placed
at zd = 0.5 and place the source at z = 2. In addition
to this main lens, we allow for external shear, described
by an amplitude |�| and orientation ✓� . The smooth
mass model therefore has 7 parameters describing the
lens. We follow previous work and model dark matter
subhalos using the Pseudo-Ja↵e density profile (Muñoz
et al. 2001),

(x) =
1

2x
�

1

2
p

x2 + x2

t

, (3)

where x = r/r
E

and xt = rt/rE are the radius and the

tidal truncation radius, respectively, in units of the sub-
halo’s Einstein radius, and  = ⌃(r)/⌃cr is the dimen-
sionless surface density expressed in units of the lensing
critical surface density (Schneider et al. 1992).
Figures 1 and 2 illustrate the increased sensitivity to

substructure provided by spectroscopically resolved data.
Figure 1 shows an example of ALMA observations of a
lensed DSFG, both for spectroscopically resolved visibil-
ities and channel-integrated visibilities. The greyscale
and colored panels show the residuals from the best-
fitting smooth lens models for each case, and the sub-
structure perturbation clearly stands out more readily in
velocity space. In Figure 2, we show the substructure
parameter errors derived from simulated observations of
another lensed DSFG, whose properties were chosen to
be representative of the lenses found in Hezaveh et al.
(2012). The parameter uncertainties plotted in this Fig-
ure were estimated by a Fisher matrix calculation; we
marginalize over a considerably larger number of nui-
sance parameters describing the source emission when
fitting spectroscopically resolved visibilities, compared to
fitting the channel-integrated visibilities. Despite the in-
creased number of marginalized nuisance parameters, the
parameter uncertainties are considerably reduced when
we utilize the full, velocity-resolved data cube (compare
grey vs. blue contours). This is true for the “macro
model” parameters describing the smooth lens, and for
the subhalo parameters as well.

(Hezaveh et al. 2013)

• ~0.03″の高い空間分解能
   (ハッブル望遠鏡を凌駕)

• 速度構造の観測により
   サブ構造の検出効率を
   さらに高める!



重力レンズ SDP.81

Tamura, Oguri, et al. (2015)

長基線観測の
テストのため
ALMAチーム
により観測、
データ公開
zs=3.042
zl=0.299

空間分解能
~0.03″！

観測 モデル
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Figure 5. Initial subhalo search using ALMA Science Verification observations of SDP.81. Depicted are maps of linearized �E from Equation (16), showing
twice the difference in log marginalized posterior probability density between a smooth model without substructure, and a model with a subhalo of mass
M = 108.6M�, as a function of location of that subhalo. The three panels correspond to analysis of Band 6 only (left), Band 7 only (middle), and joint Bands
6 and 7 (right). Based on the significant improvement to the fit provided by substructure (as indicated by the map), we subsequently added one subhalo to our
lens model, and re-optimized the model parameters (see Table 1). The contours in the insets show the 1-, 2-, and 3 -� confidence regions for the position of the
subhalo from a non-linear joint fit to the data.

therefore, decide to model binned visibilities with noise lower
than 5.0 and 5.5 mJy in bands 6 and 7 respectively, which con-
tain about 40% of the total number of unbinned visibilities.

Our smooth density model consists of the following terms.
First, the main lens is described by a singular elliptical power
law surface density profile of the form (x,y) / [x2 + y2

/(1 -
✏)2]-↵/2 where ↵ is the radial power-law index, and x and y
are measured relative to the lens centroid xlens,ylens (Barkana
1998). To avoid degeneracy of the orientation angle when
ellipticity is close to zero, we use fitting parameters ✏x and
✏y, defined so that ✏ = (✏2

x + ✏

2
y)1/2 and the orientation angle

is given by the arctangent of these components. Addition-
ally, we allow for low order angular multipoles in the main
lens, of the form m(r,�) = [Am cos(m�)+Bm sin(m�)](r/rs)-↵

for m = 3,4, where rs = 100. Note that the same radial slope
↵ and centroid (xlens,ylens) are used for the multipoles and
for the ellipsoidal piece. Finally, we also allow for exter-
nal shear, parameterized by the usual components �1 and �2.
Overall, therefore, our primary lens model contains 12 freely
adjustable parameters.

5.1. Initial subhalo search
Once a smooth model is obtained, we use the best-fit param-

eters to perform a linearized search for subhalos. As we have
mentioned above, these lens parameters, source parameters,
antenna parameters, etc., all become nuisance parameters that
we marginalize over for every different model when we search
for subhalos. We follow Hezaveh et al. (2013a) and model the
subhalo deflection field using a truncated isothermal surface
density profile, also called a pseudo-Jaffe profile (Muñoz et al.
2001). This profile is characterized by a velocity dispersion
�v and truncation radius rt , and the total mass of the subhalo is
given by Msub = ⇡�

2
v rt/G. To reduce the dimensionality of the

subhalo parameter space, we assume that rt is related to �v by
rt = (�v/

p
2�G)rE, where �G is the velocity dispersion of the

main lens, determined from its observed Einstein radius rE.
We search for subhalos over a range of subhalo masses, over
a 8⇥8 arcsec area around the lens center. Figure 5 shows the
results of our initial search. The figure plots �E , twice the dif-
ference in marginalized log posterior between a model with a
subhalo compared to our smooth model, as a function of sub-

halo location for a subhalo mass M = 108.6M�. As the figure
indicates, there are several locations where adding a subhalo
improves the posterior considerably, with the most significant
having �E = -22.2.

As discussed above in Section 4, improper modeling of sys-
tematics and unknown errors can lead to spurious detections
of substructure. We have attempted to mitigate these effects
by marginalizing over many potential systematics, including
time-varying antenna phase errors. Nevertheless, it is pos-
sible that the apparent detection of substructure indicated in
Figure 5 could be due to an unknown interferometric data
corruption, such as visibility decorrelation or rapidly varying
antenna phase errors. Given that such errors are temporally
variable, an analysis of multiple datasets observed at different
times can reveal if our analysis is affected by them. As a test
of this, we analyzed bands 6 and 7 data separately, noting that
they were obtained on different dates. Our analysis reveals a
consistent pattern between the two bands (see Figure 5), giv-
ing us confidence that the level of unknown systematics from
such effects is below our statistical uncertainties. Figure 6
illustrates the difference between our best-fitting model with-
out substructure and the best-fitting model with substructure
for bands 6 and 7. As expected, the subhalo’s effect is largely
localized to its immediate vicinity and the counter-images of
that region.

Based on the results of this initial linearized search, we then
expanded our lens model to include a subhalo, with 3 ad-
justable parameters: mass Msub, and 2-D location xsub. We
then re-fit the joint data set, re-optimizing all the parameters
fully nonlinearly. We find that a model with a subhalo of mass
M = 108.96M� improves the marginalized log posterior fit by
�E = -47.3 in the joint fit (note that the initial linear search
was performed at Msub = 108.6M�). Based upon this result, we
conclude that the ALMA Science Verification observations of
SDP.81 detect a subhalo in the projected mass distribution.
Having found the best-fit parameters for the detected subhalo,
we then sample the full parameter space (smooth lens and sub-
halo parameters) non-linearly using our Markov Chain Monte
Carlo sampler. Figure 7 shows the error covariance of the re-
constructed lens parameters for the joint fit to bands 6 and 7.
We do not find evidence for significant degeneracies between
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Figure 11. The errorbars indicate the 95% confidence limits on the projected
differential number density of subhalos around SDP.81, derived using the
non-detection regions shown in Figure 10 and the detection of the 109 M�
subhalo. For comparison, the shaded band shows the 90% confidence region
from Dalal & Kochanek (2002).

Figure 12. Limits on the normalization (A) and slope (⌘) of the mass func-
tion dn/d logM = A(M/Mpivot)-⌘ , using the bounds in Figure 11. Here we
use Mpivot = 109M�. The grey contours show constraints derived using Equa-
tion (26), while the red contours show how the constraints change if we ne-
glect the marginally detected subhalo with M ⇡ 108M�. The top panel shows
the probability at ⌘ = 0.9. The red and black curves simply show a slice of
the probability of the lower panel at ⌘ = 0.9. For comparison, the histograms
show the distribution of A using assumptions based on ⇤CDM simulations
assuming two different values of csubs/chost, which are intended to be repre-
sentative. These values assume ⌘ = 0.9 and a distribution of host halo masses
and concentrations given by abundance matching. See Section 6 for details.

use the same set of high-resolution zoom-in simulations de-
scribed in Mao et al. (2015) with the addition of a very high-
resolution cosmological box, (40963 particles in a 400 Mpc/h
box, ds14_i) from the Dark Sky Simulations (Skillman
et al. 2014)14. This calibration is done by first assuming a
constant log–log slope (⌘), then finding the best-fit M0 for
each host halo in the simulations, and finally for all host ha-
los, finding the best-fit values of (↵,�,�) in

M0 = ↵M�
hostc

�
host. (28)

With this model, we can then predict the subhalo mass func-
tion given the host halo mass and concentration and the log–
log slope.

The subhalo abundance predicted in the procedure de-
scribed above is for all subhalos within the virial radius of the
host halo. To convert our prediction to the relevant quantity
probed by strong lensing measurements, we need to assume
a spatial distribution for the subhalos. Here we make three
simplifying assumptions: (1) the subhalo spatial distribution
is independent from the subhalo mass function (i.e., subhalos
of different mass halos have the same spatial distribution); (2)
the angular distribution of subhalos is isotropic (see, however,
Nierenberg et al. 2011); and (3) the radial distribution of sub-
halos within their host halos follows an NFW profile with a
characteristic concentration csubs. In other words, we assume
the subhalo abundance factorizes into a mass dependence and
radial dependence, n(M,r) = n(M) f (r), where the radial de-
pendence f (r) is an NFW profile of concentration csubs.

To predict the projected abundance of substructure, our
model requires a prescription for the concentration of the
subhalo distribution, csubs. In ⇤CDM simulations, gener-
ally the radial distribution of subhalos is less centrally con-
centrated than the dark matter distribution of the host halo
(i.e., csubs/chost < 1) (e.g., Nagai & Kravtsov 2005; Gao et al.
2012), and at small radii the subhalo distribution may become
shallower than an NFW profile (e.g., Xu et al. 2015a). Ob-
servational results for real galaxies are less clear: some are
consistent with csubs/chost ' 1 (e.g., Guo et al. 2012; Yniguez
et al. 2014), while others imply that galaxies are less concen-
trated (e.g., Hansen et al. 2005) than the total mass distribu-
tion in their hosts. Also note that our assumption of spher-
ical symmetry might lead us to underestimate the average
substructure abundance around lenses, since strong lenses are
preferentially viewed along the major axis of their host halos
(Rozo et al. 2007; Hennawi et al. 2007).

Given the uncertainty in predictions for csubs, we treat it as
a free parameter, along with other parameters describing the
lens halo: the host halo mass and concentration (Mhost, chost),
and the log–log slope (⌘) of the subhalo mass function. Us-
ing these model ingredients, we can predict dn/d logM pro-
jected at the Einstein radius. The histograms in the top panel
of Figure 12 show an example, the distribution of A, i.e.,
dn/d logM at M = 109M� computed with this model. For
this figure, we assume the mass function slope is ⌘ = 0.9, and
we show two possible values for the subhalo concentration,
csubs/chost = 0.2 and 1.0, which should span the range of un-
certainty described above. For the other two parameters, we
marginalize over possible values of the host halo mass and
concentration using the following prior. We first assign galaxy
luminosity to dark matter halos and subhalos with the abun-
dance matching technique (e.g., Conroy et al. 2006; Reddick
et al. 2013), and find the joint distribution of mass and con-

14
http://darksky.slac.stanford.edu

(Hezaveh et al. 2016)

(DK02)

• レンズ解析より~109Msunのサブハローを検出 
     (Hezaveh et al. 2016; Inoue et al. 2016)

• 連続光のみでまだ速度構造は使用せず、今後の
   進展に期待



小スケール観測: まとめ
• 複数像のフラックス比、ないし広がったソース
   の解析からサブ構造に制限

• 現状はCDMとコンシステントだがまだまだ
   統計が足りない

• アルマ望遠鏡観測により大きな進展が見込める



増光を利用した遠方銀河探査

Abell2218 (Kneib et al. 2004)

• 重力レンズ増光を利
   用して遠方の暗い
   銀河を詳しく調べる

• Zwicky (1937) により
   はやくも言及



宇宙の再イオン化ACCELERATED EVOLUTION OF THE LYα LUMINOSITY FUNCTION AT z ! 7 13

fraction of IGM is related to the size of typical ionized bub-
bles, and Furlanetto et al. (2006) predict xHI from the size of
the ionized bubble with the analytic model. Based on Figure 6
of Dijkstra et al. (2007b), our estimates of the Lyα transmis-
sion fraction of IGM at z = 5.7− 7.3 suggest that the typical
size of the ionized bubble is very small, ∼ 2 comoving Mpc,
and the estimated neutral hydrogen fraction is ∼ 0.6 from the
top panel of Figure 1 of Furlanetto et al. (2006). Based on
these results of xHI , we conclude the neutral hydrogen frac-
tion is relatively high, xHI = 0.3−0.8 at z = 7.3 that includes
the uncertainties of the various model predictions and the Lyα
transmission fraction estimated from the observations.
In Figure 13, we plot our estimate of xHI at z = 7.3, and

compare it with those from the previous studies. The mea-
surements of the Lyα LF imply xHI < 0.63 at z = 7.0
(Ota et al. 2010), and this result is consistent with our estimate
of xHI = 0.3 − 0.8 at z = 7.3. The studies of Lyα emitting
fraction by Pentericci et al. (2011), Schenker et al. (2012),
Ono et al. (2012), Treu et al. (2012), Caruana et al. (2012,
2014), Pentericci et al. (2014), and Schenker et al. (2014) in-
dicate xHI ! 0.5 at z ∼ 7, and these estimates are also com-
parable with ours within the uncertainties. Moreover, the Lyα
damping wing absorption of QSO continuum suggests xHI
! 0.1 at z = 7.1 (Mortlock et al. 2011; Bolton et al. 2011)
that is, again, consistent with our estimate.
In Section 4.2, we find that the decrease of the Lyα LF at

z = 6.6 − 7.3 is larger than that at z = 5.7 − 6.6. This
accelerated evolution can be also found in Figure 13, albeit
with the large uncertainties, by the comparison of our z =
7.3 result (red filled circle) with the strongest upper limit of
xHI from the previous z = 6.6 result (blue filled diamond).
While we find that the Lyα LF decreases from z = 6.6 to
7.3 at the > 90% confidence level, the difference of the xHI
estimates between z = 6.6 and 7.3 is only within the 1σ level
that is less significant than the Lyα LF evolution result. This
is because the error bar of xHI at z = 7.3 is not only from
the uncertainties of the Lyα LF estimates, but also from the
errors of the UV LF measurements and the variance of the
theoretical model results.
It is implied that the amount of IGM neutral hydrogen

may increase acceleratingly at z ∼ 7. However, the results
of the xHI evolution are based on various assumptions that
should be examined carefully. In Section 4.4.1, we assume
f esc
Lyα,z=5.7/f

esc
Lyα,z=7.3 = 1. Observational studies show that

the Lyα escape fraction of LAEs increases from z ∼ 0 to∼ 6,
i.e., f esc

Lyα,z=0/f
esc
Lyα,z=6 < 1 (Ouchi et al. 2008; Hayes et al.

2011; see also Ono et al. 2010). If this trend continues to
z = 7.3, the intrinsic Lyα escape fraction with no IGM ab-
sorption would be f esc

Lyα,z=5.7/f
esc
Lyα,z=7.3 < 1. In this case, we

obtain the value of T IGM
Lyα,z=7.3/T

IGM
Lyα,z=5.7 is smaller than our

estimate above (see Equation 7) and an xHI estimate higher
than our result of xHI = 0.3− 0.8 at z = 7.3.

4.4.2. Comparison with Optical Depth of
Thomson Scattering

In this section, we investigate whether the relatively high
value of our xHI estimate can explain the Thomson scatter-
ing optical depth, τel, measurements given by WMAP and
Planck. Because one needs to know xHI evolution at z =
0 − 1100 to derive τel, we use three models of the xHI evo-
lution (Choudhury et al. 2008) that cover typical scenarios
of the early and relatively-late cosmic reionization history.
We refer to these three xHI evolution models as models A,

Figure 13. Evolution of neutral hydrogen fraction of IGM. Top and bot-
tom panels are the same plots, but with the ordinate axes of linear and log-
arithmic scales, respectively. The red filled circle is the xHI estimate from
our Lyα LF at z = 7.3. The blue filled triangle, square, diamond, and
pentagon denote the xHI values from the Lyα LF evolution presented in
Malhotra & Rhoads (2004), Kashikawa et al. (2011), Ouchi et al. (2010), and
Ota et al. (2010), respectively. The blue open diamond and circle indicate
the xHI constraints given by the clustering of LAEs (Ouchi et al. 2010) and
the Lyα emitting galaxy fraction (Pentericci et al. 2011; Schenker et al. 2012;
Ono et al. 2012; Treu et al. 2012; Caruana et al. 2012, 2014; Pentericci et al.
2014; Schenker et al. 2014), respectively. The magenta filled triangles show
the xHI measurements from the optical afterglows of GRBs (Totani et al.
2006, 2014). The green filled squares and open triangle are the xHI con-
straints provided from the GP test of QSOs (Fan et al. 2006) and the size
of QSO near zone (Mortlock et al. 2011; Bolton et al. 2011), respectively.
The hatched and gray regions represent the 1σ ranges for the instantaneous
reionization redshifts obtained by nine-year WMAP (Hinshaw et al. 2013;
Bennett et al. 2013) and WMAP+Planck (Planck Collaboration et al. 2013),
respectively. The doted, dashed and solid lines show the models A, B, and C,
respectively (Choudhury et al. 2008).

B, and C corresponding to the minimum halo masses for
reionization sources that are ∼ 109, ∼ 108, and ∼ 5 ×
105 M⊙, respectively, at z = 6 in the semi-analytic models
of Choudhury et al. (2008). We present the xHIevolution of
models A, B, and C in Figure 13, and τel as a function of red-
shift for these models in Figure 14. In Figure 14, the hatched
and gray regions represent the 1σ range of τel measured by
WMAP and WMAP+Planck, respectively. While models A
and B are consistent with our xHI estimate at z = 7.3 in Figure
13, the models A and B fall far below the τel measurements
ofWMAP andWMAP+Planck in Figure 14. These results re-
quire reionization that proceeds at an epoch earlier than the
models A and B. The model C is such an early reionization
model that just agrees with the lower end of the error of our
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Figure 14. Evolution of Thomson scattering optical depth, τel. The
hatched and gray regions indicate the 1σ ranges of the τel measure-
ments of τel= 0.081 ± 0.012 and τel= 0.089+0.012

−0.014 obtained by nine-
year WMAP (Hinshaw et al. 2013; Bennett et al. 2013) and WMAP+Planck
(Planck Collaboration et al. 2013), respectively. The doted, dashed, and solid
curves represent the models A, B, and C, respectively (Choudhury et al.
2008).

xHI estimate at z = 7.3 in Figure 13. However, the model C
is barely consistent with the WMAP result within the 1σ er-
ror in Figure 14. Moreover, in Figure 14, the τel value from
WMAP+Planck is higher than the one of model C beyond the
uncertainty. Thus, there is a possible tension between our es-
timate of high xHI and the CMB measurements of high τel. A
similar tension between τel and galaxy observation results is
also claimed by Robertson et al. (2010) who discuss UV lu-
minosities of reionization sources that are based on observa-
tional quantities independent from the Lyα LFs of our study.

4.4.3. Physical Origin of the Accelerated Evolution of Lyα LF

The physical origin of the accelerated Lyα LF evolu-
tion could be something other than the rapid increase of
the neutral hydrogen at z ! 7, because the τel measure-
ments have a tension with the high xHI value that is es-
timated with our Lyα LF under the assumption that the
Lyα LF evolution is given by the combination of cos-
mic reionization and cosmic SFR density evolution. Sim-
ilarly, large values of xHI estimates at z ≃ 6 − 7 are
obtained from the Lyα damping wing absorption tech-
niques with LAEs (Kashikawa et al. 2006, 2011; Ota et al.
2008, 2010; Ouchi et al. 2010; Shibuya et al. 2012), LBGs
(Pentericci et al. 2011; Schenker et al. 2012; Ono et al. 2012;
Treu et al. 2012; Caruana et al. 2012, 2014; Pentericci et al.
2014; Schenker et al. 2014), QSOs (Bolton et al. 2011), and
GRBs (Totani et al. 2014). Recent theoretical studies sug-
gest a few physical pictures that explain the τel measurements
and the large xHI estimates given by the Lyα damping wing
absorption measurements. The first picture is the presence
of clumpy neutral hydrogen clouds in ionized bubbles at the
end of reionization epoch. Lyα line and UV continuum from
objects would be attenuated by a number of optically thick
absorption systems that have large HI column densities such
as Lyman limit systems (Bolton & Haehnelt 2013; Xu et al.
2014). The absorption systems of the clumpy HI clouds do
not contribute to the volume-limited value of xHI significantly,

but to the attenuation of Lyα-line and UV-continuum emitted
from objects. Interestingly, recent ALMA observations report
a possible HI cloud emitting [CII]158µm near a star-forming
galaxy at z = 6.6 (Ono et al. 2014), supporting this physical
picture. If this picture is correct, our finding of the accelerated
Lyα LF evolution indicates that the number of such clumpy
HI clouds rapidly increases at z ! 7. The second picture is
the increase of ionizing photon escape fraction towards high-z
(Dijkstra et al. 2014). Lyα photons are produced by recombi-
nation following photoionization in ionized gas of a galaxy.
The more the ionizing photons escape from the galaxy, the
smaller an amount of recombination is. Under the significant
escape of the ionizing photons, Lyα emission is not efficiently
produced by ionized clouds in a galaxy. This picture recon-
ciles with the increase of the ionizing photon escape fraction
suggested by Nakajima & Ouchi (2014) from the ionization
parameter evolution. If this picture is correct, the accelerated
Lyα LF evolution would suggest either the sudden decrease of
the gas covering fraction of galaxies or the boosting of the ion-
ization parameter that would make density-bounded clouds in
galaxies. However, in this picture, the high xHI values given
by the UV-continuum studies of QSOs and GRBs are not ex-
plained. Additional physical mechanisms would be required
for these xHI results of the UV-continuum studies.
Another possibility is that the tension between the xHI esti-

mates and τel would not exist, because the uncertainty of the
xHI estimates are very large (Figure 13). In fact, the tension
is found at the significance level only beyond ∼ 1 sigma. It
is not clear whether the tension is a hint for the discrepancy
between the xHI and τel estimates. One of the dominant fac-
tors of the xHI uncertainty is the error of the Lyα LFs, which
is largely caused by the statistical errors due to the small LAE
samples. To obtain a large sample of LAEs, it is necessary
to carry out narrowband imaging observations in survey fields
significantly wider than this study. One promising project is
the Subaru/Hyper Suprime-Cam (HSC) survey that will com-
plete 30 deg2 and 3.5 deg2 narrowband observations for LAEs
at z = 5.7 − 6.6 and 5.7 − 7.3, respectively, with the depth
comparable with those accomplished by the present Subaru
surveys. With the strong constraint of xHI given by the HSC
survey, we will address the problem whether the tension is a
discrepancy between xHI and τel estimates and a new physical
picture is really needed.

5. SUMMARY
We have conducted the ultra-deep Subaru/Suprime-Cam

imaging survey for z = 7.3 LAEs with our custom narrow-
band filter, NB101, that has a sharp bandpass for a high sensi-
tivity of faint line detection. We have observed a total of≃ 0.5
deg2 sky of SXDS and COSMOS fields with the integration
times of 36.3 and 69.5 hours, respectively. We have reached
the 5σ limiting luminosity of L(Lyα) ∼ 2.4× 1042 erg s−1,
which is about 4 times deeper than those achieved by the pre-
vious Subaru studies for z ! 7 LAEs and comparable with
the luminosity limits of the previous Subaru z = 3.1 − 6.6
LAE surveys. Our observations allow us to derive the Lyα LF
at z = 7.3 with the unprecedented accuracy, and to examine
the Lyα LF evolution from z = 6.6 to 7.3 reliably. The major
results of our study are listed below.

1. We identify three and four LAEs in SXDS and COS-
MOS fields, respectively. These numbers are surpris-
ingly small, because we expect to find a total of ∼ 65
LAEs by our survey in the case of no evolution of

Konno et al. (2014)

• 宇宙は星形成による電離
   光子により z~6-7 で再イ
   オン化

• 光子散乱の光学的厚みは
   CMB観測から得られる

• 銀河の紫外光度関数の
   観測から推定した電離
   光子数はCMB観測推定
   より少ない？



HST Frontier Fields

Abell 370 Abell S1063

chosen based on known lensing strength, sky location, ancillary data

1 2 3

4 5 6

J. Lotz et al.



Hubble Frontier Fields (HFF)

• 宇宙望遠鏡科学研究所の所長裁量時間を使った
   ハッブル望遠鏡のpublicサーベイ (2014-2016)

• 6つの銀河団を可視+近赤外で深く撮像

• データは即時公開される
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Figure 3. Examples of delensed z = 9 magnifications maps (according to the CATS models) of the WFC3/IR fields (red outlines
13600 ⇥ 12300) to be imaged for each Frontier Fields cluster. In each panel, north is up and east is left.

Figure 4. Co-moving volume per unit redshift as a function of
redshift for a range of cosmologies in a flat universe, provided for
reference.

This corresponds to retaining only the brightest of each
multiply-imaged galaxy. Figure 3 shows our result for
the delensed CATS z = 9 magnification maps as an il-
lustrative example.
We then summed over all source pixels j, brightening

the luminosity function by the magnifications (but not
reducing the areas since we are already working in the
delensed source plane) to yield lensed number counts of

gles ensures unique delensed regions in the source plane. Squares
could get twisted upon delensing. Alternatively, we could have
skipped the initial rebinning and simply measured each triangle’s
magnification as the ratio of its lensed and delensed areas. This
yields nearly identical results.

unique background galaxies:

N
galaxies

(L
obs

) =
X

j

�(µ
j

L)A
s

. (4)

4.3. Source Plane Search Volumes

Based on the delensed magnification maps from CATS,
Sharon, and Zitrin, we can estimate the total source
plane search areas as a function of magnification. These
search areas correspond to search volumes within, say,
�z = 1 of a given redshift as plotted for reference in
Figure 4 (e.g., Hogg 1999). In Figure 5, we plot the cu-
mulative search area (and z ⇠ 9 volume) as a function of
magnification for all six clusters according to the CATS
and Zitrin-LTM models. (T. Johnson et al., 2014, in
preparation, present a corresponding plot for the Sharon
models.) We also show the strong general agreement be-
tween the total lensed areas according to CATS, Sharon,
and Zitrin-LTM. Based on these models, the full sur-
vey should yield ⇠5 arcmin2 (⇠9,000 Mpc3 at z ⇠ 9) of
source plane search area in the 6 lensed WFC3/IR fields.
About 10% of that should be magnified by a factor of
6 (⇠2 magnitudes) or greater. The blank parallel fields
will yield about 5–6 times the search area of the lensed
fields (⇠28 arcmin2, or ⇠50,000 Mpc3 at z ⇠ 9). We
stress these are upper limits as we have not accounted
for search area lost due to foreground objects.

4.4. Predicted Number Counts

Figure 6 shows our “optimistic” z ⇠ 9 LF (the Bradley
et al. 2012 LF withM⇤ fainter by 0.36 mag) lensed by ev-
ery submitted lens model, yielding estimated numbers of

L

n(L)

Lmin

lensing

Coe et al. (2015)

HST 
FOV

actual
survey
area

• 利点: 限界等級よりも暗い
   銀河をレンズ増光により
   検出できる

• 欠点: レンズ拡大効果に
   より実質的にサーベイ
   する面積が狭まる

• どちらの効果が勝つか
   (観測銀河数が増えるか
    減るか) は光度関数の
    傾きによる



不定性: 質量モデル
• 観測された銀河に対する重力レンズ効果を
   補正し物理量を求めるには質量モデルが必要

• 質量モデルを間違えれば結果も間違える

• 質量モデルの不定性に対処するため
   (1) 分光観測 (e.g., VLT/MUSE) により複数像の
        赤方偏移をできるだけ測定
   (2) 複数のチームによる質量モデル、結果の 
        相互比較
   (3) シミュレーションを使ったテスト



The Frontier Fields Lens Models
https://archive.stsci.edu/prepds/frontier/lensmodels/

• さまざまな質量モデリングの結果が公開され、
   誰でも使用・比較できるようになっている

https://archive.stsci.edu/prepds/frontier/lensmodels/


質量モデリングチーム

HFF開始前
から参加

HFF開始後
に参加



“parametric” “non-parametric”

• 数個のパラメタで表さ
  れる component (halo, 
   galaxy, ...) の組み合わせ
  で質量分布を表現

• パラメタを最適化

• 質量面密度をグリッド
   で表し質量分布を表現
   (自由度高い)

• 観測を再現するように
   各グリッドの値を決定



glafic

2

Figure 1.1: Example of lens equation solving for point sources. I use square grids (thin black
lines) that are adaptively refined near critical curves to derive image positions for a given
source. Upper panels show image planes, and lower panels are corresponding source planes.
Critical curves and caustics are drawn by blue lines. Positions of sources and images are
indicated by red triangles. Left panels show an example from a simple mass model that
consist of NFW and SIE profiles. A source near the center is producing 7 lensed images. In
right panels, I add small galaxies to the primary NFW lens potential. This time 5 lensed
images are produced.

im
age plane (θ

i )
source plane (β

i )

• 重力レンズ解析のための
   公開ソフトウェア
  (“parametric” mass modeling)

• 適合格子を用いた効率的
   なレンズ方程式解き

• 質量モデリングのための
   様々な機能 (e.g. MCMC) 

• 興味/質問のある人は
   私まで

http://www.slac.stanford.edu/~oguri/glafic/

http://www.slac.stanford.edu


glafic (Tokyo) team

Masafumi Ishigaki Ryota Kawamata

Masamune Oguri      
Masami Ouchi 

Kazuhiro Shimasaku



Kawamata, Oguri, Ishigaki, Shimasaku & Ouchi ApJ 819(2016)114

• glaficを用いた
   モデリング
 

• 100個以上の
   複数像を再現
   するように
   質量分布決定
 (~200 constraints,
  ~100 parameters) 

• 複数像の位置を
   rms~0.4″と
   良く再現

Precise mass modeling of four HFF clusters 5
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Figure 2. Multiple image systems used for mass modeling, dropout galaxies, and critical curves of the best-fitting models for Abell 2744
(upper left), MACS J0416.1−2403 (upper right), MACS J0717.5+3745 (middle left), and MACS J1149.6+2223 (middle right). Underlying
color-composite images are created from the HST B435+V606, i814+Y105, J125+JH140+H160 band images. Small yellow squares show
the positions of multiple images (see Appendix A for the coordinates). High-redshift dropout galaxies are marked with large squares (see
Section 5 for details). Critical curves for a source redshift of z = 8 are shown with the solid lines. Bottom panels show zoomed in HST
i814-band images of the system 1 in the MACS J1149.6+2223 field. Small yellow squares represent the positions of multiply imaged knots
that are used as constraints in mass modeling.

MACSJ0717.5+3745



モデル比較プロジェクト
• 観測された銀河団の質量モデリングを比較
   してもどれが正解かはよくわからない

• シミュレーションから重力レンズの模擬観測
   を行い、それをモデリングし比較すれば
   どれがどのくらい正解に近いかチェック可

• HFFデータの解析に向け、異なる方法で作ら
   れた二つの銀河団シミュレーションの質量
   モデリングの比較プロジェクトを行った

Meneghetti et al. arXiv:1606.04548
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Figure 3. Color composite images of Ares and Hera (left and right panels, respectively). In the upper panels, we overlay to the optical images the surface
density iso-contours. In the central panels, we show the critical lines for zs = 1 (red) and zs = 9 (white). In addition, we display the location of the multiple
image systems (numbered yellow circles). The galaxies identified as cluster-members are indicated by white circles in the lower panels.

MNRAS 000, 1–?? (2016)

“Ares” (semi-analytic) “Hera” (N-body)

Meneghetti et al. arXiv:1606.04548



The Frontier Fields Lens Modeling Comparison Project 33

Figure 22. Model vs. true magnifications (zs = 9) for Ares . The underlying 2D histograms show the distributions of the pixel values on the µ � µtrue plane
after sampling the magnification maps on a grid of 256⇥256 pixels. The black and the blue solid lines show the median and the 25� th and 75� th percentiles
of the measured magnifications in bins of µtrue . The dashed and the dotted lines parallel to the diagonal in each panel denote the limits of ±10% and ±30%
deviations from the relation µ = µtrue .

which was enabled in the reconstruction of Hera, is the inclusion of
external shear and third-order multipoles of the mass distribution.
Apparently, these additional ingredients have provided the GLAFIC
model extra degrees of freedom to properly account for the asym-
metric mass distribution of Hera.

The comparison between the metrics of parametric and free-

form methods also shows that the latter techniques are generally
less accurate in reconstructing the two-dimensional maps of con-
vergence and magnification and in measuring the mass around sub-
structures. In fact, the spatial resolution that can be achieved with
these methods is generally lower. On the contrary, radial profiles of
the convergence and of the enclosed mass are measured by several of

MNRAS 000, 1–?? (2016)

増光率の
モデル予言
と正解との
比較 
(Ares)



増光率の
モデル予言
と正解との
比較 
(Hera)

34 M. Meneghetti et al.

Figure 23. Model vs. true magnifications (zs = 9) for Hera , as in Fig. 22.

MNRAS 000, 1–?? (2016)



36 M. Meneghetti et al.

Figure 25. Radar plot showing the scores of each model for all metrics discussed in the paper. Larger polygons correspond to better overall performance.
Each chart corresponds to a di�erent lens model (see labels on the top) and shows results for both Ares (blue) and Hera (red), or whichever is available. The
seven metrics are shown on the vertices of each chart. For each metric, the scores range from 0 (worst; plotted at the center of the chart) to 1 (best; plotted
at the vertex), normalized to the maximum value recorded by all models. A filled polygon is obtained by connecting the plotted scores of all metrics for each
reconstruction.

each of these properties, we defined a metric aimed at quantifying
the performance of the method.

The key results of this phase of the comparison exercise of lens
mapping methodologies can be summarized as follows.

• Parametric methods are generally better at capturing two-
dimensional properties of the lens cores (shape, local values of
the convergence and of the magnification). The free-form methods
are as competitive as the parametric methods to measure conver-
gence and mass profiles. It is worth mentioning, however, that, in
both Ares and the Hera, the cluster galaxies were good tracers of
the cluster mass distributions.
• The accuracy and precision of strong lensing methods to mea-

sure the mass within the Einstein radius (or more generally within
the region probed by the strong lensing constraints) is very high.
The measured profiles deviate from the true profiles by only a few
percent at these scales. Of course, larger deviations are found at radii
larger and smaller than the Einstein radius. The determination of
the mass enclosed within the Einstein radius was extremely robust
for all methods.

• The largest uncertainties in the lens models are found near
substructures and around the cluster critical lines. For some of the
parametric models, the total mass around substructures (identified
by cluster galaxies) is constrained with an accuracy of ⇠ 10%.
However, other methods have much larger scatter. Uncertainties on
the magnification grow as a function the magnification itself and
are therefore more pronounced near the cluster critical lines. For the
best performing methods, the accuracy in the magnification estimate
is ⇠ 10% at µ

true

= 3 and degrades to ⇠ 30% at µ
true

= 10.

• Switching from Ares to Hera, i.e. from a purely parametric to
a more realistic lens mass distribution, the gap between parametric
and free form methods becomes smaller. Algorithms such as that
used by the GLAFIC team, which include third order multi-poles
in the lens mass distribution, have extra degrees of freedom which
allow them to better reproduce asymmetries. These asymmetries,
and possible variations of the halo ellipticity as a function of radius,
seem to be the strongest limitations of parametric methods. The
adoption of an hybrid approach, where parametric and free-form
methods are combined also to describe the large-scale component

MNRAS 000, 1–?? (2016)

モデル比較プロジェクト結果
Meneghetti et al. arXiv:1606.04548

glafic が総合的に
No. 1の正確さ！



再イオン化の結果
Ishigaki et al. arXiv:1702.04867

10 Ishigaki et al.

Figure 8. Left panel: ρUV calculated with Mtrunc = −10.0. The black circles present ρUV from the best-fit luminosity functions at
z ∼ 7 − 10 (this work) and those at z ∼ 4 − 6 (Bouwens et al. 2015). The blue line and the light blue shade denote the best-fit function
of ρUV and the 1σ error, respectively, calculated with Equation (22) (see text for the best-fit parameters). Middle panel: τe integrating
from z = 0 to a redshift z. The red line and the magenta shade represent τe(z) and the 1σ error, respectively, that are consistent with
ρUV(z) shown with the blue line in the left panel. The black line and the gray region show the values of τe and its 1σ error, respectively,
obtained by Planck Collaboration et al. (2016). Right panel: evolution of QHII. The green line and the light green shade present QHII and
the 1σ error, respectively, that agree with ρUV(z) shown with the blue line in the left panel based on Equation 16. The symbols denote
constraints of QHII from Ota et al. (2008) (filled circle), Konno et al. (2014) (open diamond), Carilli et al. (2010) (filled square), Bolton
et al. (2011) (filled star), McQuinn et al. (2008) (open circle), Ouchi et al. (2010) (filled diamond), McQuinn et al. (2007) (filled pentagon),
Mesinger (2010) (open triangle), McGreer et al. (2011) (open star), McQuinn et al. (2007); Mesinger & Furlanetto (2008); Dijkstra et al.
(2011) (open pentagon), Chornock et al. (2013, 2014) (filled hexagons), Totani et al. (2014) (open hexagon), and Patel et al. (2010) (open
square).

Figure 9. Contours at 68% (pink shade) and 95% (magenta
shade) confidence levels of ⟨fescξion⟩ and Mtrunc parameters. The
upper horizontal axis represents ⟨fescξion⟩, and the lower horizontal
axis denotes the average escape fraction ⟨fesc⟩ under the assump-
tion of log ξion/[erg−1 Hz] = 25.34 (Bouwens et al. 2016c). The
blue shade shows the 68% confidence contour calculated with the
constraints of ∆z from Planck Collaboration et al. (2016). The
solid lines represent ∆z = 1.0, 2.0, 3.0, and 5.0.
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Figure 4. Same as Figure 1, but for z ∼ 10. The horizontal axes
in the top and bottom panels present the apparent and intrinsic
magnitudes in the H160 band, respectively. The blue (green) cir-
cles denote the results of Oesch et al. (2013) (Calvi et al. 2016), re-
spectively. In the bottom panel, we also plot the results of Bernard
et al. (2016) (open down-triangles), McLeod et al. (2016) (crosses),
and Bouwens et al. (2015) (open up-triangles).

Figure 5. Contours of Schechter parameters M∗ and α indicating
the 68% and 95% confidence levels. In this plot, blue (magenta)
symbols an lines denote z ∼ 6−7 (z ∼ 8). The values of the best-fit
Schechter parameters are shown with the cross symbols. We plot
the best-fit parameters from previous studies: Ishigaki et al. (2015)
(circles), Atek et al. (2015a) (square), Bouwens et al. (2015) (down-
triangles), Ouchi et al. (2009) (up-triangle), Schenker et al. (2013)
(pentagons), Livermore et al. (2016) (diamonds), and Bradley et al.
(2012) (star).

0 < fesc < 1 and log ξion/[erg−1 Hz] = 25.34 (Bouwens
et al. 2016c). The parameter range of Mtrunc is −16 to
−10; Mtrunc = −16 mag corresponds to the detection
limit of current observations, and Mtrunc = −10 mag is
the magnitude of minimium halos which have star form-
ing galaxies predicted by Faucher-Giguère et al. (2011).
We calculate the total χ2 value by summing up the χ2

Figure 6. Contours of Schechter parameters M∗ and α at z ∼
6−7 with different mass models; GLAFIC (red), Bradac(magenta),
CATS (yellow), Sharon (green), Williams (cyan), and Zitrin-LTM
(blue). The values of the best-fit Schechter parameters are shown
with the cross symbols.

Figure 7. UV luminosity densities ρUV calculated with Mtrunc =
−15. We show ρUV taken from this work (red circles), Bouwens
et al. (2015) (black filled circles), McLeod et al. (2016) (black filled
squares), Coe et al. (2013) (black filled down-triangles), and Ellis
et al. (2013) (black filled up-triangle) . We also plot total ρUV
from Steidel et al. (1999) (open hexagon), Wyder et al. (2005)
(open diamond), Schiminovich et al. (2005) (open squares), and
Reddy & Steidel (2009) (open circles). The orange circles denote
the cosmic SFRDs derived with ρUV and IR luminosity densities
(Dunlop et al. 2016).

of the data points of ρUV, QHII, and τe, and derive the
best-fit parameters. The best-fit parameters are log ap =
26.07, bp = 3.9, cp = 2.0, dp = 5.5, ⟨log fescξion⟩ = 24.52
and Mtrunc = −10.0, and the χ2 is 7.90 for 12 degrees
of freedom. Figure 8 shows the best-fit functions of ρUV,
τe, and QHII. These best-fit functions agree well with the
data points of the observations. This result is in contrast
with the conclusion of our previous study of Ishigaki et al.
(2015), which claim that no parameter set can reproduce
both the ρUV evolution and the value of τe. The main
reason for this difference is that Ishigaki et al. (2015) use
the value τe = 0.091+0.013

−0.014 from Planck Collaboration
et al. (2014), which is significantly larger than the latest

• HFFの6つの銀河団をすべて解析 (z~6-10で~400の銀河)

• 紫外光度密度は high-z で緩やかに減少

• CMBから推定した光学的厚みと銀河観測は
   コンシステント → 電離光子数問題の解決



遠方銀河観測: まとめ
• 重力レンズの増光を利用して普通には観測が
   難しい遠方の暗い銀河を研究できる

• 6つの銀河団をハッブル望遠鏡で深く観測す
   る Hubble Frontier Fields (HFF) が行われた

• これら銀河団の質量分布も100個以上の複数
   像を用いこれまでにない高い精度で決定

• HFFにより観測された高赤方偏移銀河の数
   も大幅に増え再イオン化の描像がはっきり
   してきた


