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Outstanding issues

http://map.gsfc.nasa.gov/

• Universe is dominated
 by unknown components
 called dark matter and 
 dark energy
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Dark matter: my (biased) view

• assumed to be cold and collision-less

• it works remarkably well at cluster scale 
   (e.g., Clowe et al. 2006; Oguri et al. 2012)

• currently, it looks ok at galaxy scale too
 (satellite/dwarf problems being resolved...)

• extensive efforts for direct/indirect detections
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Dark matter detected??
8
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Fig. 10.— Left panel: Spectral energy distributions of the templates listed in the figure legend. In the left panel, we use CLEAN events with
|b| > 1◦ and all longitudes. Besides the disk-correlated emission (green), uniform emission (brown), and the Fermi bubble template (blue),
the cusp component modeled as a FWHM = 4◦ Gaussian in the GC (red) has been included. Vertical bars show the marginalized 68%
confidence range derived from the parameter covariance matrix for the template coefficients in each energy bin. Arrows indicate 1σ upper
limits. For reference, we overplot lines centered at 111 GeV and 129 GeV (dotted cyan) convolved with a three-Gaussian approximation of
the LAT instrumental response (Edmonds 2011), and their sum (dotted black). The line centers and amplitudes are determined from a fit
to the spectrum in the right panel (see text). Right panel: the same as the left panel but using data masking out |b| < 5◦ and |l| > 6◦.
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Fig. 11.— Same as right panel of Figure 10 but splitting the
bubble template into two regions one with |b| > 30◦ and the other
with |b| < 30◦.

of the Fermi-LAT at E ! 100 GeV, the spectral excess
at 110 " E " 140 GeV is consistent with emission from
one or two lines after considering the line-spread func-
tion (LSF) (Edmonds 2011), which strongly suggests the
novel nature of the gamma-ray cusp as no known astro-
physical process can produce this feature. Except for
unexpected instrumental systematics or an increasingly

unlikely statistical fluke, a dark matter annihilation sig-
nal from the inner Galaxy is the most likely explanation.
In another variant of the fit, we split the bubble template
into two independent components in the fitting, high lat-
itude (|b| > 30◦) and low latitude (|b| < 30◦). The pur-
pose is to demonstrate that the low latitude bubble is
also independent from the gamma-ray cusp. Again, we
find no sign of a bump in the spectra of other diffuse
gamma-ray components, but the cusp has a spectrum
with an excess at 110− 140 GeV and is consistent with
zero in the other bins (Figure 11). Instead of using CLEAN
class, we have tried using SOURCE class for the likelihood
analysis, and obtained similar results (Figure 12).
The energy spectrum of the cusp is consistent with

a single spectral line (at energy 127.0 ± 2.0 GeV with
χ2 = 4.48 for 4 d.o.f.). But a pair of lines at 110.8± 4.4
GeV and 128.8±2.7 GeV provides a marginally better fit
(with χ2 = 1.25 for 2 d.o.f.). We have compared the best
fit one line and two line profile with the measured en-
ergy spectrum in Figure 13. The observation is compat-
ible with a 140.8± 2.8 GeV WIMP annihilating through
γZ and γh assuming mh = 125 GeV (with χ2 = 3.33
for 3 d.o.f.) or a 127.3 ± 2.7 GeV WIMP annihilating
through γγ and γZ (with χ2 = 1.67 for 3 d.o.f.) (e.g.,
Weiner & Yavin 2012).
The gamma-ray cusp appears to possess a symmetric

distribution around the Galactic center. To investigate
whether there is any more extended cusp component con-
tributing the excess at 120 − 140 GeV, we include an
extra “outer ring” template as shown in Figure 8. The

Su & Finkbeiner arXiv:1206.1616

• Su and Finkbeiner 
  reported gamma ray 
  line from Galactic   
  center in the public 
  Fermi satellite data

• it is consistent with 
   WIMP annihilation at  
   energy 127±3 GeV

• interestingly, LHC  
   recently discovered
   “Higgs” at 126GeV!
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Dark energy: my (biased) view

• energy component that leads to accelerated
   expansion of the Universe

• currently no plausible physical model

• therefore no direct/indirect detection likely 
   in the near future

• only astronomical observations provide clues

pDE = w(z)�DE w(z) ~ −1: dark energy EOS
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Gµ� + Fµ� = 8�GTmatter
µ�

Gµ� = 8�G(Tmatter
µ� + T dark energy

µ� )

Or modified gravity?

• Einstein equation for usual dark energy model

• an alternative is to modify action and let the 
   higher-order term to accelerate the Universe 

• lensing will provide a key to distinguish modified
   gravity with dark energy
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Cosmological application

• constraints from geometrical tests

• constraints from growth of structure
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Geometrical tests

• measure Hubble parameter (=expansion rate)

• or its integral (=distance)
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Geometrical tests with lensing

• quasar lens statistics

• time delays between quasar images

• distance ratios from lensing
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Quasar lens statistics

• acceleration of the Universe increases a chance
   of strong lensing for a distant quasar
   (Fukugita et al. 1990; Turner 1990)
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How it works

• lensing objects of lensed quasars are dominated
  by early-type galaxies which formed early (z~2)

• assume that velocity dispersion function dn/dσ
  does not evolve with redshift (up to z~1)

• then probability that a distant quasar is strongly 
   lensed is proportional to the volume element 
   DA(z)2H(z)−1, which is sensitive to dark energy

• a problem: samples of lensed quasars too small!
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SDSS quasar lens search (SQLS)

• project to search for strongly lensed quasars
   among spectroscopic SDSS quasars
  
• identify lens candidates using ugriz-band SDSS 
   images, need extensive follow-up observations
   to confirm true lenses 

• all the survey in DR7 already completed!

• co-PI: Naohisa Inada, Masamune Oguri

http://www-utap.phys.s.u-tokyo.ac.jp/~sdss/sqls/
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Number of lenses discovered

more than
1/3 of total 

~10 year effort!14
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Cosmological constrains from DR7

• use a statistically well-defined subsample of 19 
   lensed quasars from 50,836 quasars

Oguri et al. AJ 143(2012)120– 33 –

Fig. 1.— The histogram shows the image separation distribution of the strong lenses in the
statistical lens sample used for our cosmological analyses. The subsample contains 19 lenses

selected out of 50,836 source quasars, as summarized in Table 1. Lines show the theoretical
predictions for three different values of the cosmological constant ΩΛ assuming a flat universe

and no evolution of the galaxy velocity function. The vertical dotted line shows the θmin = 1′′

lower limit for the image separations in the statistical lens sample.

• also include lens
   redshifts, which 
   help disentangle 
   cosmology and 
   galaxy evolution 
   (also papers by Cao, 
    Zhu+)
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Cosmological constrains from DR7
Oguri et al. AJ 143(2012)120

– 36 –

Fig. 4.— Constraints on ΩM and ΩΛ for the non-flat models with a cosmological constant.

Contours show 1σ and 2σ confidence regions from the three different cosmological probes:
SQLS strong lens statistics (this paper), baryon acoustic oscillation (BAO) measurements

(Percival et al. 2010; Blake et al. 2011), and the CMB anisotropy from WMAP (Komatsu
et al. 2011). The dotted line indicates a flat universe with ΩM + ΩΛ = 1. The upper left
shaded region indicates models with no big bang.

– 37 –

Fig. 5.— Constraints on ΩM = 1 − ΩDE and w for the flat dark energy models. As in

Figure 4, the 1σ and 2σ constraints from the three different cosmological probes are shown
by contours. The horizontal dotted line indicates a cosmological constant with w = −1.

• strong evidence for 
   accelerated expansion
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Quasar lens statistics: summary

• large SQLS lens sample confirmed dark energy

• the result becomes less significant if we allow 
   velocity dispersion function to evolve, but still 
   favor models with dark energy

• in SQLS, systematic errors (from the lens mass 
   distribution and velocity dispersion function) 
   are estimated to be comparable to statistical  
   errors, suggesting that  this method may not 
   be very promising in the future

18



Time delays between quasar images

Poindexter et al. (2007)

• monitoring of quasar 
   lens systems enables
   measurements of  
   time delays 
   (~20 measurements so far)

Δt
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Time delay and H0

• time delay is known to provide a unique 
   probe of the absolute distance scale, H0

observe
(typically a 

few months)

observe (θ) + 
mass modeling

constraint on 
the distance ratio

∝ H0−1
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H0 and dark energy

• a characteristic scale of CMB 
  is sound horizon rs at z=1091

• we measure an angle subtended
   by rs, i.e., θs=rs/DA(z=1091)

• constrains on dark energy from
   CMB comes through this, 
   meaning H0 and dark energy
   are always degenerate
  (accurate H0 is a key for dark energy!)

rs

θs

D
A (z=

1091)
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Challenge: lens model dependence

• example from quadruple 
   quasar lens PG1115+080

• resulting constraints on 
   H0 depends sensitively 
   on assumed lens mass 
   distribution

(names of lens model assumed)
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How to get around

(1) “golden lens” approach
     add many observations (velocity dispersion, 
     lensed host galaxy, ...) to constrain the lens 
     potential and derive H0 (e.g., Suyu et al. 2010)

(2) “ensemble of lenses” approach
    combine many quasar lenses to average out 
    complexity and perturbation on the lens 
    potential, use our knowledge on average 
    properties of lensing galaxies to derive H0

      (e.g., Oguri 2007)
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“Golden lens” B1608+656
No. 1, 2010 DISSECTING THE GRAVITATIONAL LENS B1608+656. II. 207

under various assumptions stated in the Appendix that are
either justified in Paper I or will be shown to be valid in
Section 4.2. In essence, we find that the ACS data models that
give acceptable fits are all equally probable within their errors,
making conditioning on M5 (i.e., setting MD = M5, where
M5 is Model 5 in Paper I for the lensed image processing)
approximately equivalent to marginalizing over all models MD.

Furthermore, we can marginalize out the parameters of the
smooth lens model η separately:

P (γ ′|d, MD = M5) ∝
∫

dη P (d|γ ′, η, MD = M5)

· Pno ACS(γ ′) P (η). (30)

(See the Appendix for details of the assumptions involved.) We
see that the resulting PDF, P (γ ′|d, MD = M5), can itself be
treated as a prior on the slope γ ′. Without the ACS data d, this
distribution will default to the lower level prior Pno ACS(γ ′). For
the rest of this section, we refer only to the generic prior P (γ ′),
keeping in mind that this distribution may or may not include the
information from the ACS data. This will allow us to isolate the
influence of the ACS data on the final results, when we compare
the PDF in Equation (30) with some alternative choices of P (γ ′).

For the velocity-dispersion likelihood, the predicted velocity
dispersion σ P as a function of the parameters described in
Section 3.1 is

σ P = σ P(Ωm, ΩΛ, w, γ ′, κext, rani|zd, zs, reff, REin), (31)

where the effective radius, reff , the Einstein radius, REin, and the
mass enclosed within the Einstein radius, MEin, are fixed. The
effective radius is fixed by observations, and REin and MEin are
the quantities that lensing delivers robustly. The uncertainty in
the dynamics modeling due to the error associated with reff , REin,
and MEin is negligible compared to the uncertainties associated
with κext. The likelihood function for σ is a Gaussian:

P (σ |Ωm, ΩΛ, w, γ ′, κext, rani) = 1
√

2πσ 2
σ

exp
[
− (σ − σ P)2

2σ 2
σ

]
.

(32)
Finally then, we have the following simplified version of

Equation (24), where the posterior PDF has been successfully
compartmentalized into manageable pieces:

P (π |∆t, d, σ ) ∝
∫

dγ ′ dκext drani

· P (∆t|zd, zs,π , γ ′, κext, MD = M5)
· P (σ |Ωm, ΩΛ, w, γ ′, κext, rani)
· P (γ ′) P (κext) P (rani) P (π ). (33)

Sections 4–7 address the specific forms of the likelihoods and
the priors in Equation (33). In particular, in the next section, we
focus on the lens modeling of B1608+656 which will justify the
assumptions mentioned above and provide both the time-delay
likelihood and the ACS P (γ ′) prior.

4. LENS MODEL OF B1608+656

The quadruple-image gravitational lens B1608+656 was
discovered in the Cosmic Lens All-Sky Survey (CLASS; Myers
et al. 1995; Browne et al. 2003; Myers et al. 2003). Figure 1 is
an image of B1608+656, showing the spatially extended source
surface brightness distribution (with lensed images labeled by

D
G1

C

A

B

G2

1"

Figure 1. HST ACS image of B1608+656 from 11 orbits in F814W and 9 orbits
in F606W. North is up and east is left. The lensed images of the source galaxy
are labeled by A, B, C, and D, and the two lens galaxies are G1 and G2. 1 arcsec
corresponds to approximately 7 kpc at the redshift of the lens.

A, B, C, and D) and two interacting galaxy lenses (labeled
by G1 and G2). The redshifts of the source and the lens
galaxies are, respectively, zs = 1.394 (Fassnacht et al. 1996) and
zd = 0.6304 (Myers et al. 1995).10 We note that the lens galaxies
are in a group with all galaxy members in the group lie within
±300 km s−1 of the mean redshift (Fassnacht et al. 2006a). Thus,
even a conservative limit of 300 km s−1 for the peculiar velocity
of B1608+656 relative to the Hubble flow would only change
D∆t by 0.5%. As we will see, this is not significant compared to
the systematic error associated with κext. This system is special in
that the three relative time delays between the four images were
measured accurately with errors of only a few percent: ∆tAB =
31.5+2.0

−1.0 days, ∆tCB = 36.0+1.5
−1.5 days, and ∆tDB = 77.0+2.0

−1.0 days
(Fassnacht et al. 1999, 2002). The additional constraints on
the lens potential from the extended source analysis and the
accurately measured time delays between the images make
B1608+656 a good candidate to measure H0 with few-percent
precision. However, the presence of dust and interacting galaxy
lenses (visible in Figure 1) complicate this system. In Paper I,
we presented a comprehensive analysis that took into account
the extended source surface brightness distribution, interacting
galaxy lenses, and the presence of dust for reconstructing the
lens potential. In the following subsections, we summarize the
data analysis and lens modeling from Paper I, and present the
resulting Bayesian evidence values (needed in Equation (30))
from the lens modeling.

4.1. Summary of Observations, Data Analysis, and Lens
Modeling in Paper I

Deep HST ACS observations on B1608+656 in F606W and
F814W filters were taken specifically to obtain high signal-to-
noise ratio images of the lensed source emission.

In Paper I, we investigated a representative sample of PSF,
dust, and lens galaxy light models in order to extract the Einstein
ring for the lens modeling. Table 1 lists the various PSF and dust
models, and we refer the readers to Paper I for details of each
model.

The resulting dust-corrected, galaxy-subtracted F814W im-
age allowed us to model both the lens potential and source
surface brightness on grids of pixels based on an iterative and

10 We assume that the redshift of G2 is the same as G1.

Suyu et al. ApJ 711(2010)201

• four-image radio-loud lens
  system with extended 
  source, velocity dispersion, ..

• H0=70.6±3.1 km/s/Mpc
   for a fixed ΩM and ΩΛ
• uncertainty dominated by 
   l.o.s. matter fluctuations 
   (mass-sheet degeneracy),
   need several more golden 
   lenses to average it out
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“Ensemble of lenses” approach
Oguri ApJ 660(2007)1

Gravitational Lens Time Delays 13

Fig. 8.— Statistical constraint on the Hubble constant from
16 time delay quasars (40 image pairs). Thick solid line indicates
goodness-of-fit parameter from all 16 lens systems plotted as a
function of the Hubble constant h. The resulting Hubble constant
is h = 0.70+0.03

−0.02 at 68% confidence and h = 0.70+0.09
−0.05 at 95% confi-

dence. The Hubble constant estimated using jackknife resampling
has a larger error, h = 0.70 ± 0.06 at 68% confidence (see text for
details). Thin solid lines show goodness-of-fit parameter for each
lens system.

where Rij,obs, θij,obs, Ξobs are those for this specific image
pair listed in Table 1, and G(Ξ|Ξobs(h)) indicates the
Gaussian distribution with median Ξ = Ξobs. Note that
calculating Ξobs from observed time delays require the
Hubble constant h, hence Lp is a function of h. Then
we compute the effective chi-square by summing up the
logarithm of the likelihoods:

χeff(h) =
∑

quasar

1

np

∑

pair

[−2 lnLp(h)] . (26)

The first summation runs over lens systems, whereas the
second summation runs over image pairs for each lens
system; the number of pairs for each lens is denoted by
np. Note that np = 1 all double lens systems, and a
quadruple lens system should have np ≤ 4C2 = 6 depend-
ing on how many time delays have been observed for the
lens system. The factor 1/np was introduced such that all
lens systems have equal weight on the effective chi-square
irrespective of the number of image pairs. We derive the
best-fit value and its error of h by the standard way using
a goodness-of-fit parameter ∆χeff ≡ χeff − χeff(min).

We show our result in Figure 8. The Hubble constant
measured from the combination of all 16 lens systems
is h = 0.70+0.03

−0.02 at 68% confidence and h = 0.70+0.09
−0.05 at

95% confidence. The obtained value is in good agreement
with other estimates, such as the local distance measure-
ment using Cepheid calibration (Freedman et al. 2001)
and the CMB anisotropy (Tegmark et al. 2006; Spergel
et al. 2007). The constraint from each lens system, which
is plotted in Figure 8, is summarized in Table 2.

We also derive the Hubble constant using the jackknife
resampling by regarding each 16 lens system as a subsam-
ple. The result h = 0.70±0.06 at 68% confidence has the
same mean but larger error than that estimated from the
effective chi-square. There are several possible source of
this difference. One is the underestimate of the width of
the input distributions. In particular, many of the time

TABLE 2
Hubble Constant from Each Lens

System

Lens Name h (1σ range)

B0218+357 0.21 (–)
HE0435−1223 1.02 (0.70–1.39)
RXJ0911+0551 0.96 (0.75–1.21)
SBS0909+532 0.84 (0.47–)
FBQ0951+2635 0.67 (0.56–0.81)
Q0957+561 0.99 (0.82–1.17)
HE1104−1805 1.04 (0.92–1.22)
PG1115+080 0.66 (0.49–0.84)
RXJ1131−1231 0.79 (0.59–1.03)
B1422+231 0.16 (–0.36)
SBS1520+530 0.53 (0.46–0.61)
B1600+434 0.65 (0.54–0.77)
B1608+656 0.89 (0.77–1.20)
SDSS J1650+4251 0.53 (0.44–0.63)
PKS1830−211 0.88 (0.58–)
HE2149−2745 0.69 (0.57–0.82)
All 0.70 (0.68–0.73)

Note. — The Hubble constant and
its error are estimated from the effective
chi-square.

delay quasar systems has been claimed to be affected by
lens galaxy environments (e.g., Morgan et al. 2005; Fass-
nacht et al. 2006; Momcheva et al. 2006; Williams et al.
2006; Auger et al. 2007), and thus our input strength of
external shear might be somewhat smaller than the true
one (see also discussion in §7). Another possible source
is the non-Gaussianity of measured time delays: In equa-
tion (25) we assumed the Gaussian distribution for the
measurement uncertainties of time delays, but sometimes
they are quite different from the Gaussian distribution.4

We note that in our method we can in principle include
non-Gaussianity by just replacing G(Ξ) in equation (25)
with any appropriate probability distributions, as long
as we know such distributions.

7. DISCUSSIONS AND CONCLUSION

In this paper, we have studied time delays between
multiply imaged quasars. Adopting the reduced time de-
lay, which is a measure of how the lens potential is com-
plicated compared with the simple isothermal form, we
have explored the dependence of time delays on various
complex structure of lens potentials such as external per-
turbations, non-isothermality, and substructures. The
distribution of time delays has been studied as a func-
tion of image configuration which we characterize using
two dimensionless quantities, the asymmetry and open-
ing angle of an image pair. We have pointed out that the
sensitivity on lens potentials is quite dependent on the
image configuration. For instance, more symmetric im-
age pairs are more affected by a small change of the lens
potential. Image pairs with smaller opening angles are
also more sensitive to lens potentials. In particular time
delays of close image pairs are very sensitive to higher-
order external perturbations and substructures that are
very hard to be constrained from mass modeling even for

4 Among time delays listed Table 1, those of SDSS J1650+4251
and B1422+231 could be significantly different from the true values
(C. S. Kochanek, private communication). We perform the same
analysis excluding these two systems and find the Hubble constant
to be h = 0.70+0.03

−0.04 at 68% confidence from the effective chi-square.
Therefore our result is not biased significantly by these systems.

• concept: define dimension-
   less `reduced time delay’ 
   which quantifies complexity 
   of lens potentials

• most perturbations are 
   shown to be averaged out 
   in this statistics

• by combining 16 lenses, 
    H0=68±6(stat.)±8(syst.)km/s/Mpc
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Time delays: summary

• time delays provide unique way to constrain H0

• a challenge lies in degeneracy with lens mass 
  distribution, which can be overcome by either
  very detailed observations and modeling or 
  relevant statistical approaches

• future of time delays is bright, more data from 
   time-domain surveys (LSST, Pan-STARRS, ...)
   and people are getting more interested in time 
   delays these days

26



�, ⇤, ⇥ � DA(zl, zs)
DA(zs)

Distance ratio cosmography

• lensing signals proportional to Σcr−1, so 
   for a fixed lens redshift signals scale as

z

DA(zl, zs)/DA(zs)

zl

1• one can constrain dark 
   energy by observing this 
   evolution of lens signals 
   as a function of zs
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Many approaches

• the Einstein radius plus velocity dispersion 
   (e.g., Grillo et al. 2007; Liao & Zhu 2012)

• double Einstein rings (e.g., Collett et al. 2012) 

• many arcs in massive cluster (e.g., Jullo et al. 2010)

• again, degeneracy with the lens potential is 
   the limiting factor

28



�(⇥; zs,1)
�(⇥; zs,2)

=
DA(zl, zs,1)
DA(zs,1)

DA(zs,2)
DA(zl, zs,2)

Shear ratio test

γ(zs,1)

γ(zs,2)

θ

• for given lens(es), take a ratio
   of weak lensing shears at some 
   fixed radius θ but at different zs

• advantage: lens mass distribution
   dependence (Σ(θ)) cancels out!
   (Jain & Taylor 2003)
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Shear ratios in observations
The Astrophysical Journal, 749:127 (12pp), 2012 April 20 Taylor et al.

with the cut on source redshift errors, we obtain best-fit values
Σ0 = 98.8 ± 11 h70 M! pc−2 and rs = 158+55

−28 h−1
70 kpc. The

reduced χ2 is marginally higher for this sample than for the
much larger uncut sample, but the best-fit value of rs closer to
the expected value, so we will take this as our fiducial profile,
and marginalize over values of rs and Σ0 in this range for our
cosmological calculations. The best-fit value of rs also places
some constraints on possible centering errors for the groups.
We have tested the effect of centering errors by adding random
offsets to the individual group centers, with rms values of 6′′,
12′′, and 24′′ in each coordinate. The resulting profiles are still
well fit by our model, but the best-fit value of rs increases to
220, 260, and 340 h−1

70 kpc for the three cases, respectively. This
suggests average centering errors are !6′′ ∼ 25–50 h−1

70 kpc in
each coordinate, consistent with other estimates of the centering
uncertainty (M. George et al., in preparation).

We have also investigated other forms of stacking. In principle
we could correct for the predicted variations in concentration, for
instance, stacking in r/rs , or we could stack in comoving rather
than physical coordinates. Testing scaling the radius by rs, rvir, or
(1+zL), we find little or no significant improvement in the χ2 of
the fit to the radial profile. In particular, we find only a marginal
indication of any trend in concentration with mass or redshift.
Given that the halo-to-halo scatter measured in simulations is
comparable or larger than to the average trends over the mass
and redshift range spanned by our group sample, this is perhaps
unsurprising. Furthermore, since the concentration relations are
themselves dependent on cosmology, we would have to account
for this dependence in our marginalization over cosmological
parameters, so we will not attempt to correct for variations in
concentration. We can also consider other analytic fits to the
profile. We find that NFW is preferred over a cored isothermal
profile at the 95% confidence level and preferred over a singular
isothermal (Σ(r) ∝ r−1) profile at 97%–98% confidence. Thus,
our stacked profile provides empirical confirmation of the
NFW model in agreement with other recent high-precision
measurements of cluster density profiles (Umetsu et al. 2011;
Okabe et al., in preparation).

Finally, we note that the fit to the radial profile gives us an
independent check of our empirical shear variance estimates.
Because we fit the profile without binning, we have very large
number of degrees of freedom and thus a narrow range of
expected scatter in the reduced χ2. The best-fit NFW profile
has a reduced χ2 of 0.931 with a very small (0.0027) expected
scatter, so we conclude that our empirical variance is probably
overestimated by ∼7%, corresponding to error bars which are
3.6% too big. We correct for this in all our subsequent analysis,
multiplying the empirical shear variance by a factor of 0.931.

4. RESULTS

4.1. The Geometric Signal

Given a functional form for the radial dependence of the
surface mass density contrast ∆Σ(r), we can proceed to estimate
Γ(x) via Equation (12). The weights in the sum can be calculated
as the inverse variance of the Γij

wij = (var[Γij ])−1 =
(

∆Σi(rij )
Σ(c,∞)i

)2

var[γ̃t,ij ]−1, (16)

where the variance of the tangential shear is determined empir-
ically, as described in Section 2.2.

Figure 3. Geometric dependence of the lensing signal, plotted vs. the distance
ratio x ≡ ωS/ωL, for a WMAP7 cosmology with ΩM = 0.27, ΩΛ =
0.73. The solid (red) curve shows the theoretical prediction Γ(x) = 0 for
x < 1; Γ(x) = 1−1/x for x > 1. Note that the data have not been weighted for
cosmological sensitivity (as in Section 4.2); a fit to the unweighted data favors
a slightly shorter length scale for x (i.e., lower value of ΩΛ) but with very large
uncertainties.
(A color version of this figure is available in the online journal.)

The “model” here, the geometric sensitivity function (1 −
1/x), is fixed, while the data vary as we change Σ0 and rs, which
both change ∆Σ(r), and the cosmological parameters, which
map the redshifts (zS, zL) onto x-values and also determine Σc,∞.
If we restrict ourselves to flat cosmologies with two components,
matter and dark energy, then the goodness of fit depends on Σ0,
rs, ΩX, and w.

Figure 3 shows Γ(x) over the range x = [0, 5] for a
WMAP7 cosmology with ΩM = 0.27, ΩΛ = 0.73. The density
contrast profile parameters are fixed to the best-fit values rs =
158 h−1

70 kpc and Σ0 = 98.8 h70 M! pc−2. The points are
weighted averages in bins of 0.3 in x, while the solid (red)
curve is the theoretical expectation:

Γ(x) = 0 for x < 1 ; (17)
= 1 − 1/x for x " 1.

Weights here are inverse variance, as in Equation (16). The error
bars on the data points are calculated as usual for an inverse-
variance-weighted average:

σΓ,bin =
( ∑

bin

wij

)−1/2
, (18)

where the sum is over all pairs (i, j ) with values of x in the bin.
Clearly the geometric signal is present in the COSMOS

data and measured to reasonable significance over a broad
range of distance ratio x. Given the possible systematics in the
measurement discussed below, the excellent agreement between
theory and data illustrates the potential of the method. On the
other hand, “χ2-by-eye” is somewhat misleading for this figure,
as the binning in x may hide systematics at particular distance
ratios. (There is a 2.1σ indication of positive signal in one
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Figure 9. gT amplitude, a, vs. redshift for A370 (top) bright
(stars) and faint (circles) samples, ZwCl0024+17 (middle) and
RXJ1347-11 (bottom). A trend of higher WL amplitude with red-
shift is seen.

sample in front of each cluster, and the other points repre-
sent background galaxy samples. For each sample, we also
calculate the median lensing distance ratio, 〈dls/ds〉, for each
cosmological model – ΛCDM (empty circles), Einstein-de
Sitter (crosses), and an empty universe (empty squares), us-
ing the COSMOS photo-z measurements of galaxies within
the same CC-magnitude boundaries defined for each back-
ground sample and thus obtain the predicted depth. We
interpolate between these discrete predicted values to pro-
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Figure 10. gT amplitude ratio, Γ, vs. redshift for A370 (top)
bright (stars) and faint (circles) samples, ZwCl0024+17 (mid-
dle) and RXJ1347-11 (bottom). Also plotted is the lensing
depth, dls/ds, vs. redshift for different cosmologies - ΛCDM (cir-
cles+solid line), Einstein-de Sitter (crosses+dashed line), and an
empty Universe (squares+dashed-dotted line) estimated using the
COSMOS photometric redshift catalogue. Horizontal bars repre-
sent the width of the source redshift distribution, given as the
68% range of data about the median redshift.

c© 0000 RAS, MNRAS 000, 000–000

in massive clusters
(Medezinski et al. 2010)

in stacked groups
(Taylor et al. 2012)
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Distance ratio: summary 

• there are many ways to measure distance ratios
   from strong and weak lensing

• again, degeneracy with lens mass distribution is 
   a main source of systematics
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Growth of structure 

• density fluctuations 
   grow as δ(a)∝D(a) 
   in the linear regime
 
• D(a)=a when Universe 
   is matter dominated, 
   but growth slows down
   due to the accelerated 
   expansion 

• provides another way to study dark energy

Chapter 9: Cosmology with Gravitational Lensing

Figure 9.1: The growth rate D(a) ∝ ag(a) for different cosmological models. Left: The growth rate for three
different dark energy equation of state w. The larger value of w indicates more dark energy in the past, leading
to more suppression of the growth rate. Right: An example of the growth rate for the modified gravity model (the
so-called f(R) model, see e.g., Narikawa & Yamamoto 2010). In modified gravity models, the growth rate can be
significantly different from the case of general relativity, even if the expansion history of the universe is similar, and
can be scale-dependent (kc is the Compton wavelength scale).

of various observable distances, is given as

χ(z) ≡

∫ z

0

dz′

H0

[

Ωm(1 + z′)3 + ΩK(1 + z′)2 + Ωdee
3
∫ z′

0
dz′′[1+w(z′′)]/(1+z′′)

]−1/2

, (9.1)

where H0(= 100h km/s/Mpc) is the Hubble parameter, Ωm, ΩK, and Ωde are the energy density
parameters of matter, curvature, and dark energy today, respectively, and w(z) is the dark energy
equation of state:

w(z) ≡
p̄de
ρ̄de

. (9.2)

The dark energy equation of state w(z) is a key parameter for distinguishing between various
dark energy models, and therefore plays a central role in cosmological analysis as presented in this
Chapter.

Dark energy that has negative pressure leads to repulsive gravity, and therefore does not cluster
significantly. However, dark energy does affect the growth of mass clustering through its effect on
the expansion rate. In linear theory, all Fourier modes of the mass density perturbation, δm, grow
at the same rate: δm(a) ∝ ag(a), where g(a) is the growth suppression rate. The growth factor can

be computed by solving the linearized differential equation, ¨̃δk + 2(ȧ/a) ˙̃δk − 4πGρ̄mδ̃k = 0, where
δ̃ is the Fourier transform of the density perturbation and the dot is the derivative with respect to
physical time. Hence, the growth suppression rate g(a) can be obtained by solving the differential
equation (e.g., Komatsu et al. 2009):

d2g

d ln a2
+

[

5

2
+

1

2
ΩK(a)−

3

2
w(a)Ωde(a)

]

dg

d ln a
+

[

2ΩK(a) +
3

2
(1− w(a))Ωde(a)

]

g = 0, (9.3)
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Growth in modified gravity

• in modified gravity 
   theories, growth rate
   D(a) can be different
   from GR, even if the 
   expansion history is
   exactly the same
 
• therefore growth of 
   structure is a key to
   distinguish dark energy
   from modified gravity

Chapter 9: Cosmology with Gravitational Lensing

Figure 9.1: The growth rate D(a) ∝ ag(a) for different cosmological models. Left: The growth rate for three
different dark energy equation of state w. The larger value of w indicates more dark energy in the past, leading
to more suppression of the growth rate. Right: An example of the growth rate for the modified gravity model (the
so-called f(R) model, see e.g., Narikawa & Yamamoto 2010). In modified gravity models, the growth rate can be
significantly different from the case of general relativity, even if the expansion history of the universe is similar, and
can be scale-dependent (kc is the Compton wavelength scale).

of various observable distances, is given as

χ(z) ≡

∫ z

0

dz′

H0

[

Ωm(1 + z′)3 + ΩK(1 + z′)2 + Ωdee
3
∫ z′

0
dz′′[1+w(z′′)]/(1+z′′)

]−1/2

, (9.1)

where H0(= 100h km/s/Mpc) is the Hubble parameter, Ωm, ΩK, and Ωde are the energy density
parameters of matter, curvature, and dark energy today, respectively, and w(z) is the dark energy
equation of state:

w(z) ≡
p̄de
ρ̄de

. (9.2)

The dark energy equation of state w(z) is a key parameter for distinguishing between various
dark energy models, and therefore plays a central role in cosmological analysis as presented in this
Chapter.

Dark energy that has negative pressure leads to repulsive gravity, and therefore does not cluster
significantly. However, dark energy does affect the growth of mass clustering through its effect on
the expansion rate. In linear theory, all Fourier modes of the mass density perturbation, δm, grow
at the same rate: δm(a) ∝ ag(a), where g(a) is the growth suppression rate. The growth factor can

be computed by solving the linearized differential equation, ¨̃δk + 2(ȧ/a) ˙̃δk − 4πGρ̄mδ̃k = 0, where
δ̃ is the Fourier transform of the density perturbation and the dot is the derivative with respect to
physical time. Hence, the growth suppression rate g(a) can be obtained by solving the differential
equation (e.g., Komatsu et al. 2009):

d2g

d ln a2
+

[
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2
+

1

2
ΩK(a)−

3

2
w(a)Ωde(a)

]

dg

d ln a
+

[

2ΩK(a) +
3

2
(1− w(a))Ωde(a)

]

g = 0, (9.3)

2

(example from f(R) model)
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Weak lensing  

• weak lensing probes amplitude of density 
  fluctuations directly

C(`) =

Z
d�W 2

GL(�)
1

f2
K(�)

P (k = `/fK(�))

• however this gives you only projected 
  (integrated) density fluctuations, i.e., 
   need something more to study growth
   of fluctuations
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Method (I): tomography 

• use source galaxies at different redshift bins

• different zs probe 
   mass distribution at
   different z ranges
   (e.g., Hu 1999)

• note significant cross-
   correlation between 
   different bins

χ
χ(zs,1)

WGL(χ)

0
χ(zs,2)

χ(zs,3)
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Weak lensing tomography: example Wide-field imaging with Hyper-SuprimeCam 19

Figure 8: Left panel: The cosmic shear power spectra for galaxy distribution divided in three redshift slices, 0 ≤
z1 ≤ 0.6, 0.6 ≤ z2 ≤ 1, and z3 ≥ 1. The bold solid curves show the expected auto-spectra of 3 redshift bins for a
ΛCDM model, while the thin curves are the results for a model with wDE = −0.9. The boxes around the bold curves
show the expected measurement error due to the sample variance and the intrinsic galaxy shapes for the HSC-Wide
survey. Right panel: The 68% C.L. constraint region in the parameter space of Ωde and wde, assuming flat wCDM
(constant wde) for a variety of experiments. The outer black contour shows current constraints from a combination
of WMAP7 and the SDSS WL measurement (Mandelbaum et al. 2012 in prep.). The other smaller contours show
the expected constraints for the HSC observables, in combination with the expected Planck CMB constraints and/or
the SDSS/BOSS galaxy clustering constraints.

ACT experiment and its successor ACTPol, and we have agreed on an almost complete overlap of the
HSC-Wide fields with the ACT region. The ACT experiment will provide a unique, redshift-independent
catalog of SZ-selected clusters with nearly 100% completeness of very massive clusters (> 8 × 1014M!)
at redshift z >

∼ 0.6 (Niemack et al. 2010). Also, it will provide a target list of sub-mm galaxies (most of
which are strongly lensed dusty galaxies, e.g., Wardlow et al. 2012) for a joint study by ALMA to study
the high-redshift source galaxy and HSC to identify the lens.
CMB-galaxy lensing: Lensing of the CMB by mass projected from the last scattering surface is one
of the most exciting possible measurements with CMB experiments such as Planck, ACT and ACTPol.
The CMB lensing and HSC-galaxy lensing effects at any given point on the sky arise from the same large-
scale structure in the overlapping redshift range, so we can cross-correlate CMB data with HSC lensing
to measure the overlapping lensing effect. The great depth of the HSC survey is crucial, as CMB lensing
arises mainly from large-scale structures at redshift z >

∼ 2. We estimate that the statistical errors on the
HSC shear-CMB lensing cross-power spectrum will be only 1.5 times as large as those on the cosmic shear
power spectrum from HSC alone (or even better than that on the largest scales), so cross-correlation with
CMB lensing will add significant power to HSC. Also, since the two lensing effects are sensitive to different
systematic errors, the cross-correlation gives us a powerful, empirical way of calibrating systematic errors.

5.3 Target accuracies of parameter constraints

Thus, from the HSC survey alone and combined with other surveys, we will derive stringent constraints on
cosmological parameters via H(z), G(k, z) and Pζ(k) following the process in Figure 6. Table 4 shows the
expected accuracies of cosmological parameters estimated using the Fisher information matrix formalism.
We included a broad range of cosmological parameters to model the observables for varying cosmological
models, and also included nuisance parameters to model the systematic errors in the observables such
as the photo-z errors, the shear multiplicative error, and so on (see Oguri & Takada 2011 for details).
For SNeIa, we derive forecast constraints from 130 SNeIa discovered by HSC-UD plus 150 local SNeIa at

(by Masahiro Takada)

predicted signal
for Subaru/HSC

bin 1: 0<zs<0.6
bin 2: 0.6<zs<1
bin 3: 1<zs
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C��(`) / P (k = `/fK(�l); zl)

Method (II): cross-correlation

γ(zs)

θ~π/ℓ

z=zl

• take cross-correlation of shear 
   and foreground objects with 
   known z=zl

• at large scale, correlation signal
   is proportional to P(k; zl), and 
   therefore can extract density
   fluctuations at z=zl P(k; zl)
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Cross-correlation: example

• expected cross-correlation
   signal between shear and 
   massive clusters in Subaru
   HSC survey
   

• “two-halo term” probes 
   matter power spectrum 
   at the cluster redshift

11

FIG. 7: The bold solid curves show stacked lensing signals in Fourier (upper-row panels) and real (lower panels) spaces, for
three cluster redshift slices, 0.2 < z < 0.3 (left panel), 0.7 < z < 0.8 (middle), and 1.2 < z < 1.3 (right), respectively. Note
that in all the plots we assumed a background source galaxy sample defined by zs > 1.5. The dotted curves indicate the
contributions from 1-halo and 2-halo terms. While the effect of off-centering is included assuming the two component model
described by Eq. (34), we also show the case without any offset by the thin solid curves for reference. The boxes around each
curve indicate the measurement errors for the binned power spectra or the binned shear profiles (see Sec. IVB) for the bin size
of 0.1 dex, assuming the survey area of 2000 deg2.

the redshift bins and the mass bins are same, i = j and
b = b′. On the other hand, the second term of Eq. (37)
gives the sampling variance contribution, which arises
because the number of clusters is fluctuated according
to the large-scale modes of large-scale structure within a
surveyed region:

Si(bb′) ≡ Ω2
sn̄i(b)n̄i(b′)

∫

dχW h
i(b)(z)W

h
i(b′)(z)χ

−2

×
∫

"d"

2π

∣

∣

∣
W̃s("Θs)

∣

∣

∣

2
PL
m

(

k =
"

χ
; z

)

. (38)

Here W̃s(") being the Fourier transform of the survey
window function. We assume a circular survey geometry
with survey area Ωs = πΘ2

s for simplicity, with the result-
ing survey window function of W̃s(") = 2J1("Θs)/("Θs).
The Kronecker delta δKij in the second term of Eq. (37)
imposes that the sampling variance is vanishing for the

counts of different redshift slices, i.e. i #= j, assuming
that the redshift slices of clusters are sufficiently wide
such that the cluster distributions in different redshift
slices are uncorrelated.

Then we can write the Fisher matrix for the cluster
number counts N

(

≡ Ni(b)

)

as

FN
αβ =

∑

I,J

∂N I

∂pα
[Cov(N ,N )]−1

IJ

∂NJ

∂pβ
, (39)

where the indices I, J run over the cluster redshift and
mass bins (i, b) and pα denotes a set of model parameters.

Oguri & Takada PRD 83(2011)023008

one-halo term two-halo term 

38



Weak lensing surveys  

• weak lensing cosmology is one of the main 
   drivers of ongoing optical imaging surveys

− CFHTLenS (170 deg2, rlim~24.8)
   completed and results come out “soon”

− KiDS (1500 deg2, rlim~25.2)
   survey started

− Dark Energy Survey (5000 deg2, rlim~25.0)
   survey start end of this year?

− Hyper Suprime-cam (1400 deg2, rlim~26.0)
   first light soon, survey from mid-2013
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Hyper Suprime-cam 

• wide-field optical 
   imager at the Subaru
   telescope
   

• collaboration between
  Japan, Taiwan, Princeton

• 1.5deg diameter FOV
   while keeping good 
   image quality for weak
   lensing
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Comparison of surveys 

HSC will be 
great and 
unique!

stay tuned 
for future
updates!
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Summary

• there are many approaches for cosmology 
   with gravitational lensing

• gravitational lensing probes both geometry 
   and growth of structure

• in many cases, degeneracy with lens mass 
   distribution is main systematic error − 
   need clever methods for future applications
   (there is plenty of room to explore!)
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