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Strong vs weak lensing

• strong lensing
− observed for individual sources
− κ≳1 (Σ≳Σcr), near critical curves/caustics
− multiple images, high elongation/magnification

• weak lensing
− observed for ensemble of sources
− κ≪1 (Σ≪Σcr), far from critical curves/caustics
− no multiple image, tiny elongation/magnification
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Weak lensing analysis

• weak lensing method

• mass reconstruction

• cluster weak lensing

• weak lensing by large-scale structure
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Lensing effect on galaxies

no lensing lens potential at the center

simulated by glafic
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simulated by glafic
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Weak lensing 

• lensing distorts background galaxies

• however, each galaxy is not spherical but has 
   intrinsic shape (ellipticity)

• extract lensing distortion by averaging many 
   galaxies’ shapes, assuming intrinsic galaxy 
   shapes are randomly oriented

inferred
shear

averaging
galaxy shapes
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Weak lensing method (I)

• characterize galaxy shapes by moment Qab

I(θ): galaxy SB profile
→

• define galaxy ‘ellipticity’

ϵ1>0 ϵ1<0 ϵ2>0 ϵ2<0
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Weak lensing method (II)

• lensing change galaxy shape: Q(s)ab → Qab

A =

✓
1� � �1 ��2
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◆

source β image θ

δβ
δθ

δθ=A−1δβ

δβ=Aδθ

A   : de-lensing
A−1: lensing
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Weak lensing method (III)

• therefore, we obtain
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Weak lensing method (IV)

• here we introduce complex shear/ellipticity

(γ and ϵ are spin-2 field, i.e., γ→γe2iϕ under rotation ɸ)

image
ellipticity ϵ

lens (γ, κ)
source

ellipticity ϵ(s)
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Weak lensing method (V)

• define reduced shear g

• then the equation can be simplified as

✏(s) =
✏� 2g + g2✏⇤

1 + |g|2 � 2Re [g✏⇤]

(weak lensing measures g, not γ!)
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Weak lensing method (VI)

• random orientation → ⟨ϵ(s)⟩=0
   + weak shear (g≪1), ϵ≪1

→ h✏i = 2g

• error on estimated reduced shear g is

σϵ~0.4 : error on intrinsic ellipticity
Ngal : number of galaxies 

cluster: g~0.03 → Ngal≳104 for enough S/N
cosmic shear: g~0.003 → Ngal≳106 for enough S/N
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Shear to mass distribution

(1) assume a model (e.g., NFW), compute 
     shear, compare with observations to
     constrain parameters to get κ(θ)

(2) mass reconstruction techniques to    
     directly obtain κ-map from shear 
     (e.g., Kaiser & Squires 1993)
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Mass reconstruction (I)

• recall: lens potential ψ and convergence κ

• shear γ and convergence κ are related as
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Mass reconstruction (II)

• convolution → product in Fourier space

→

    constant 
→ not affect γ
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Mass reconstruction (III)

• more explicitly it is written as

E-mode (real) B-mode (must vanish)

θ θ1

θ2

θ’−θθ’κ(θ)

γ+

γ×

ϕ
summing up tangential shears 
→ convergence
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Lensing E-mode/B-mode

“E-mode” generated by 
gravitational lensing

“B-mode” not generated by 
gravitational lensing

(used to check systematics)

γ+ γ×
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Mass reconstruction (IV)

• in practice, we apply a “filter” to enhance S/N

• mass reconstruction w/ filter (Schneider 1996)
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Cluster weak lensing

• cluster of galaxies

http://www.mpa-garching.mpg.de/galform/millennium/

− most massive virialized
   object in the universe

− internal structure mostly 
   determined by the 
   dynamics  of dark matter

− useful for studying dark
   matter and cosmology!
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Cluster profile and weak lensing
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⇢(r) =
⇢s

(r/rs)(1 + r/rs)2

• mass distribution follows NFW profile 

θ

γ+

dσγ/dlnθ∝θ−1

• error in each logarithmic 
   bin is 

∝θ−2

∝lnθ

θs=rs/DA
• therefore S/N is maximum 
   at around r ≈ rs



Weak lensing analysis: an example
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• SDSSJ1138+2754
   massive cluster 
   at z=0.45 showing
   giant arcs, from 
   Sloan Giant Arcs
   Survey (SGAS)

• Subaru/Suprime-
   cam gri images 
   for weak lensing 
   analysis

Subaru/Suprime-cam gri-band



Analysis in a real world
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• observed galaxy profiles are smeared by 
   Point Spread Function (PSF) from telescope 
   optics, fluctuation of atmosphere, ...

• however we can use images of stars to get
   information on PSF,  and de-convolve PSF 

• there are several approaches, including 
   moment-based method (KSB, etc.), model
   fitting, ...



Concept of analysis
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• unbiased shear estimate is one of the biggest
   challenges in weak lensing analysis

• however, it can fully be checked w/ simulations

observe

observe

source
galaxy

lensed
galaxy

smeared 
by PSF

star (point 
source)

smeared
by PSF

galaxy⊗PSF

⊗PSF (no lensing)
PSF

infer this
β=θ−α ⊗PSF
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wide-field Subaru image
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background galaxies used for weak lensing
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observed weak lensing shear map
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reconstructed mass (κ) map



Tangential shear profile 
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Oguri et al. MNRAS, 420, 3213 (2012)

• shear profile very 
   well fitted by the
   NFW model 

• suggest that this 
   cluster is massive,
   Mvir~1015MSun/h NFW fit



Stacked weak lensing
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• significant detection of weak lensing can be
   made only for massive clusters at relevant 
   redshifts (z~0.2-0.5)

• stacked weak lensing technique allows weak
   lensing studies for less massive clusters (or 
   galaxies) at higher redshifts

• it is important especially in the era of wide-
   field imaging surveys



Concept of stacked weak lensing
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+ +

cluster 1 cluster 2 cluster 3

stacked

• combine shear measurements 
  for different clusters to get 
  constraints on average property
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Power of stacked weak lensing (I)
Oguri et al. MNRAS, 420, 3213 (2012)

very precise 
shear profile!

profile very 
well fitted by
NFW profile
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Power of stacked weak lensing (II)
Oguri et al. MNRAS, 420, 3213 (2012)

2D stacking of 25 
clusters

distribution of dark 
matter in clusters 
is not spherical but 
highly elongated
(axis ratio ~ 0.5), 
consistent with 
ΛCDM prediction



Weak lensing by large-scale structure
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• direct mapping of 
   cosmological dark 
   matter distribution
   via weak lensing

• can be compared 
   with simulations 
   directly, powerful 
   cosmological probe 
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Cosmological weak lensing (I)
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• recall: convergence is written as

• angular correlation function
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Cosmological weak lensing (II)
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• work in Fourier space

P(k): matter 
power spectrum

• Rayleigh’s formula

• orthogonal relation
jℓ(x): spherical Bessel func.
Yℓm(x): spherical harmonics
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Cosmological weak lensing (III)
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• addition theorem

• then angular correlation function becomes

Cκκ: convergence power spectrum

!
Z

`d`

2⇡
C(`)J0(`✓)

(small angle approx.)

Pℓ(x): Legendre polynomials

J0(x): zeroth 
Bessel func.
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Limber’s approximation
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• use the following equality

• assuming that P(k) is slowly-varying with k
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Z
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matter power spectrumconvergence 
power spectrum
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Connection to shear 2PCF
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• shear is related to convergence as

• therefore two-point correlation function 
   of shear can be described by Cκκ(ℓ)



Physical interpretation
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fK(χ1)

fK(χ2)

z=z1

z=z2

θ~π/ℓ

• convergence power spectrum
   is integral of matter power 
   spectrum P(k) along l.o.s.
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• however wavelength k varies
   with redshift, i.e., weak lensing  
   mixes up different k-mode
   (therefore no ‘BAO’ seen)

• convergence power spectrum
   is integral of matter power 
   spectrum P(k) along l.o.s.



Summary
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• weak lensing measures reduced shear by 
   averaging many galaxies’ shapes

• fit measured shear with model predictions, 
   or direct inversion technique to reconstruct
   a mass (convergence κ) map

• signals enhanced by stacking many lenses

• weak lensing correlation function (power 
   spectrum) probe matter power spectrum 
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