Applications of gravitational lensing in astrophysics and cosmology

2. Strong lensing analysis

Masamune Oguri
(Kavli IPMU, University of Tokyo)
K A V L I
INSTITUTE FOR THE PHYSICS AND
MATHEMATICS OF THE UNIVERECDE

Contents

I. Introduction \& basics of gravitational lensing
2. Strong lensing analysis
3. Weak lensing analysis
4. Cosmological applications

Strong vs weak lensing

- strong lensing
- observed for individual sources
$-K \gtrsim I\left(\Sigma \gtrsim \Sigma_{\text {cr }}\right)$, near critical curves/caustics
- multiple images, high elongation/magnification
- weak lensing
- observed for ensemble of sources
$-K \ll I\left(\sum \ll \sum_{c r}\right)$, far from critical curves/caustics
- no multiple image, tiny elongation/magnification
(partly) based on Master Lens Database

Strong lens kinds

lensing object (lens)
lensed object (source)

Challenge in strong lensing analysis

- lens equation is 'mapping' between β and θ

$$
\vec{\beta}=\vec{\theta}-\vec{\alpha}(\vec{\theta})
$$

- in many cases we want to know $\vec{\theta}$ from $\vec{\beta}$, but it is in general very difficult because - lens equation is non-linear in $\vec{\theta}$
- solution is not unique (multiple images!)

Strong lensing analysis

- circular symmetric lenses
- more realistic models
- numerical approach
- modeling strong lens systems

Circular symmetric lenses (I)

- simple yet useful

$$
\kappa(\vec{\theta})=\kappa(\theta) \quad|\vec{\theta}|=\theta
$$

then lens potential Ψ becomes

$$
\begin{aligned}
\psi(\vec{\theta}) & =\frac{1}{\pi} \int_{0}^{\infty} d \theta^{\prime} \theta^{\prime} \kappa\left(\theta^{\prime}\right) \int_{0}^{2 \pi} d \phi \ln \left|\vec{\theta}-\vec{\theta}^{\prime}\right| \\
& =2 \int_{0}^{\theta} d \theta^{\prime} \theta^{\prime} \kappa\left(\theta^{\prime}\right) \ln \left(\frac{\theta}{\theta^{\prime}}\right) \\
\rightarrow & \psi(\vec{\theta})=\psi(\theta)
\end{aligned}
$$

Circular symmetric lenses (II)

- deflection angle

$$
\begin{aligned}
& \vec{\alpha}(\vec{\theta})=\vec{\nabla} \psi(\theta)=\underbrace{\left[\frac{2}{\theta^{2}} \int_{0}^{\theta} d \theta^{\prime} \theta^{\prime} \kappa\left(\theta^{\prime}\right)\right]}_{=\bar{\kappa}(<\theta)} \vec{\theta} \\
& \rightarrow \vec{\alpha}(\vec{\theta}) \| \vec{\theta} \\
& \alpha(\theta)=\theta \bar{\kappa}(<\theta) \\
& \theta_{2} \uparrow \text { "image" } \\
& \vec{\beta} \text { "source" }
\end{aligned}
$$

Circular symmetric lenses (III)

- therefore, lens equation reduces to ID eq.

$$
\beta=\theta-\alpha(\theta)=[1-\bar{\kappa}(<\theta)] \theta
$$

note: $\bar{\kappa}(<\theta)=\frac{M_{2 D}(<\theta)}{\pi \theta^{2} D_{A}^{2}\left(z_{l}\right) \Sigma_{\text {cr }}}$

Circular symmetric lenses (IV)

- shear [polar words $\left.\left(\theta_{1}, \theta_{2}\right)=(\theta \cos \phi, \theta \sin \phi)\right]$
using the relation: $\bar{\kappa}^{\prime}(<\theta)=-\frac{2}{\theta}[\bar{\kappa}(<\theta)-\kappa(\theta)]$

$$
\begin{aligned}
& \gamma_{1}=\frac{1}{2}\left(\frac{\partial \alpha_{1}}{\partial \theta_{1}}-\frac{\partial \alpha_{2}}{\partial \theta_{2}}\right)=-[\bar{\kappa}(<\theta)-\kappa(\theta)] \cos 2 \phi \\
& \gamma_{2}=\frac{\partial \alpha_{1}}{\partial \theta_{2}}=-[\bar{\kappa}(<\theta)-\kappa(\theta)] \sin 2 \phi \\
& \text { lens object centered at } \theta \approx 0 \\
& \rightarrow \bar{\kappa}(<\theta)-\kappa(\theta)>0
\end{aligned}
$$

Circular symmetric lenses (V)

- critical curves

$$
\operatorname{det} A=(1-\kappa)^{2}-|\gamma|^{2}=\underset{\begin{array}{c}
\text { tangential } \\
\text { critical curve }
\end{array}[1-\bar{\kappa}(<\theta)][1+\bar{\kappa}(<\theta)-2 \kappa(\theta)]}{\begin{array}{c}
\text { radial } \\
\text { critical curve }
\end{array}}
$$

tangential critical curve is a solution for $\beta=0$

$$
\begin{aligned}
& \bar{\kappa}\left(<\theta_{\mathrm{E}}\right)=1 \\
& \theta_{\mathrm{E}:} \text { Einstein radius }
\end{aligned}
$$

Solutions of lens equation

- lens equation is ID equation
- 'diagrammatic' approach is useful to understand how multiple solutions appear

$$
\begin{gathered}
\beta=\theta-\alpha(\theta) \\
\Leftrightarrow\left\{\begin{array}{l}
y=\alpha(\theta) \\
y=\theta-\beta
\end{array}\right.
\end{gathered}
$$

Example I:point mass

- model for stars, compact galaxies, ...

$$
\begin{aligned}
& \bar{\kappa}(<\theta)=\frac{M}{\sum_{A}^{\pi D_{A}^{2}\left(z_{l}\right) \Sigma_{\text {cr }}}} \frac{1}{\equiv \theta_{\mathrm{E}}^{2}}=\frac{\theta_{\mathrm{E}}^{2}}{\theta^{2}} \\
& \alpha(\theta)=\theta \bar{\kappa}(<\theta) \propto \frac{1}{\theta}
\end{aligned}
$$

Example 2: singular isothermal sphere

- standard lens model for galaxies

$$
\begin{aligned}
\rho(r) & =\frac{\sigma^{2}}{2 \pi G r^{2}} \quad \Sigma(x)=\frac{\sigma^{2}}{2 \pi G} \int_{-\infty}^{\infty} \frac{d z}{x^{2}+z^{2}}=\frac{\sigma^{2}}{2 G D_{A}\left(z_{l}\right) \theta} \\
\kappa(\theta) & =2 \pi\left(\frac{\sigma}{c}\right)^{2} \frac{D_{A}\left(z_{l}, z_{s}\right)}{D_{A}\left(z_{s}\right)} \frac{1}{\theta} \\
\bar{\kappa}(<\theta) & =\underbrace{4 \pi\left(\frac{\sigma}{c}\right)^{2} \frac{D_{A}\left(z_{l}, z_{s}\right)}{D_{A}\left(z_{s}\right)} \frac{1}{\theta}}_{\equiv \theta_{\mathrm{E}}}=\frac{\theta_{\mathrm{E}}}{\theta} \xrightarrow[\theta_{1}]{\text { two images when }|\beta|<\theta_{\mathrm{E}}} \begin{array}{l}
\text { one image when }|\beta|>\theta_{\mathrm{E}}
\end{array}
\end{aligned}
$$

Example 3: NFW profile

- standard lens model for dark matter halos

More realistic models (I)

- elliptical lens $\quad \theta \rightarrow u \equiv \sqrt{\frac{\theta_{1}^{2}}{1-e}+(1-e) \theta_{2}^{2}}$
two approaches:
I. elliptical density K(u)
$\kappa(\mathrm{u}) \rightarrow \Psi(\vec{\theta}), \vec{\alpha}(\vec{\theta}), \ldots$ through ID integral computationally more expensive

2. elliptical potential $\Psi(\mathrm{u})$
can use circular sym. result, much easier, but can cause unphysical mass distributions ('dumbbell'-like K map, negative K,)

More realistic models (II)

- external perturbation nearby object (X) also contributes to the lens potential

$$
\psi_{\mathrm{X}}\left(\overrightarrow{\theta^{\prime}}\right)=\psi_{\mathrm{X}}\left(\vec{\theta}-\vec{\theta}_{0}\right)
$$

$$
\approx \underbrace{\psi_{\mathrm{X}}\left(-\vec{\theta}_{Q}\right)}_{\text {constant }}+\underbrace{\left.\vec{\theta} \cdot \frac{\partial \psi_{\mathrm{x}}}{\partial \vec{\theta}}\right|_{-\vec{\theta}_{0}}}_{\text {uniform } \vec{\theta}}+\frac{1}{2} \vec{\theta} \cdot \underbrace{H\left[\psi_{\mathrm{X}}\left(-\vec{\theta}_{0}\right)\right]}_{\text {Hessian matrix }} \cdot \vec{\theta}+\cdots
$$

$$
H[\psi(\theta)]=\left(\begin{array}{ll}
\psi_{11} & \psi_{12} \\
\psi_{21} & \psi_{22}
\end{array}\right)=\left(\begin{array}{cc}
\kappa+\gamma_{1} & \gamma_{2} \\
\gamma_{2} & \kappa-\gamma_{1}
\end{array}\right)
$$

More realistic models (III)

- therefore, the effect of X on the main lens potential at $\vec{\theta}, \Psi_{\text {ext }}(\vec{\theta})=\Psi \times\left(\vec{\theta}^{\prime}\right)$, becomes
[again, polar coords $\left.\left(\theta_{1}, \theta_{2}\right)=(\theta \cos \phi, \theta \sin \phi)\right]$

$$
\begin{aligned}
\psi_{\mathrm{ext}}(\vec{\theta}) & \approx \frac{\theta^{2}}{2}\left[\kappa_{\mathrm{ext}}+\gamma_{\mathrm{ext}, 1} \cos 2 \phi+\gamma_{\mathrm{ext}, 2} \sin 2 \phi\right] \\
& \approx \frac{\theta^{2}}{2}\left[\kappa_{\mathrm{ext}}+\gamma_{\mathrm{ext}} \cos 2\left(\phi-\phi_{0}\right)\right]
\end{aligned}
$$

Numerical approach

- recall: solving lens equation is hard in general

$$
\vec{\beta}=\vec{\theta}-\vec{\alpha}(\vec{\theta})
$$

($\vec{\beta} \rightarrow \vec{\theta}$ is non-linear, multiple solutions allowed)

- numerical techniques to solve lens equation necessary

Numerical root finding

image plane $\left(\vec{\theta}_{\mathrm{i}}\right)$

source plane $\left(\vec{\beta}_{\mathrm{i}}\right)$

Numerical root finding

image plane $\left(\vec{\theta}_{\mathrm{i}}\right)$

source plane $\left(\vec{\beta}_{i}\right)$

Numerical root finding

image plane $\left(\vec{\theta}_{\mathrm{i}}\right)$

source plane $\left(\vec{\beta}_{i}\right)$

Numerical root finding

image plane $\left(\vec{\theta}_{\mathrm{i}}\right)$

source plane $\left(\vec{\beta}_{\mathrm{i}}\right)$

Resolution issue

image plane $\left(\vec{\theta}_{\mathrm{i}}\right)$
fail to resolve multiple images

image plane $\left(\vec{\theta}_{\mathrm{i}}\right)$ multiple images resolved
example by glafic

Practical cases

- very high grid resolution needed only near critical curves
- adaptive grid for efficient lens equation solving
- left example successfully identifies 7 lensed images of a single source

Public lens softwares

- public softwares that implement adaptive grid:
- glafic (M. Oguri)
http://www.slac.stanford.edu/~oguri/glafic/
- GRAVLENS (C. R. Keeton) http://redfive.physics.rutgers.edu/~keeton/gravlens/
- LENSTOOL (E. Jullo, J.-P. Kneib, et al.)
http://lamwws.oamp.fr/lenstool/
- see also recent review of public softwares by Lefor et al. (arXiv: I 206.4382)

Modeling strong lens systems (I)

- example:WFI2626-4536 (Morgan et al. 2004)

> 4 image system source quasar at $z=2.23$ lensing galaxy at $z \sim 0.4$

(HST image from CASTLES website)

Modeling strong lens systems (II)

- assume Singular Isothermal Ellipsoid (SIE) plus external shear
- model parameters $=9$ (mass, SIE centroid, e, PA,$\gamma_{\text {ext }}$, PA $_{\gamma}, \vec{\beta}$)
- observational constraints $=13$ (image position $\times 4$, galaxy position, flux ratios $\times 3$)
- degree of freedom $=13-9=4$

Modeling strong lens systems (III)

- search a best-fit model by X^{2} minimization

$$
\chi^{2}=\sum_{i} \frac{\left|\vec{\theta}_{i, \text { model }}-\vec{\theta}_{i, \text { obs }}\right|^{2}}{\sigma_{\theta_{i}}^{2}}+\sum_{i j} \frac{\left(\Delta m_{i j, \text { model }}-\Delta m_{i j, \text { obs }}\right)^{2}}{\sigma_{\Delta m_{i j}}^{2}}
$$

- [advanced] trick: source plane X^{2} minimization
$\vec{\theta}_{i, \text { model }}-\vec{\theta}_{i, \text { obs }} \approx A^{-1}\left(\vec{\theta}_{i, \text { obs }}\right)\left[\vec{\beta}_{\text {model }}-\vec{\beta}\left(\vec{\theta}_{i, \text { obs }}\right)\right]$
computation much faster, but \# of images can be wrong (need cross-check)

Modeling strong lens systems (IV)

- result obtained using glafic
- best-fit model has $\mathrm{X}^{2 / d}$.o.f $=6.4 / 4$

What does strong lens measure? (I)

- angular separation between images $\approx 2 \theta_{\mathrm{E}}$

'symmetric' configuration

'asymmetric' configuration
- therefore, multiple images provides good measurements of the Einstein radius $\theta_{\text {E }}$
simulated by glafic

Image separation and Einstein radius

image plane (critical curves)

source plane (caustics)
simulated by glafic

Image separation and Einstein radius

image plane (critical curves)

source plane (caustics)
simulated by glafic

Image separation and Einstein radius

image plane (critical curves)

source plane (caustics)
simulated by glafic

Image separation and Einstein radius

image plane (critical curves)

source plane (caustics)
simulated by glafic

Image separation and Einstein radius

image plane (critical curves)

source plane (caustics)
simulated by glafic

Image separation and Einstein radius

image plane (critical curves)

source plane (caustics)
simulated by glafic

Image separation and Einstein radius

image plane (critical curves)

source plane (caustics)
simulated by glafic

Image separation and Einstein radius

image plane (critical curves)

source plane (caustics)

What does strong lens measure? (II)

- recall: the Einstein radius θ_{E} is determined by

$$
1=\bar{\kappa}\left(<\theta_{\mathrm{E}}\right)=\frac{M_{2 D}\left(<\theta_{\mathrm{E}}\right)}{\pi \theta_{\mathrm{E}}^{2} D_{A}^{2}\left(z_{l}\right) \Sigma_{\mathrm{cr}}}
$$

\rightarrow strong lensing well constrains projected 2D mass within Einstein radius, $M_{2 D}\left(<\theta_{\mathrm{E}}\right)$

Note: position of arcs

- sometimes people take positions of arcs $\theta_{\text {arc }}$ and assume $\theta_{\text {arc }}=\theta_{\mathrm{E}}$
- this can be quite wrong, because arcs can be produced in asymmetric configurations, and arcs are produced preferentially along the major axis...

What does strong lens measure? (III)

- on the other hand, radial density profile is usually not very well constrained

- possible ways to constrain radial profiles
(I) strong lenses with different z_{s}
(2) more constraints (time delays, arcs, ...)
(3) complementary mass probes (velocity dispersion, weak lensing, ...)

Multiple $\mathbf{z s}_{\text {s }}$

- multiple strongly lens systems in a same lens constrains enclosed masses at different radii
- useful to constrain radial profiles, and possibly cosmological parameters as well, particularly if combined with other radial profile probes

Multiple zs: examples

source at z~3

SDSSJ0946+1006
'double Einstein ring' (Gavazzi et al. 2008)

Abell 1703
(Richard et al. 2009; Oguri et al. 2009)

Multiple probes

- velocity dispersion
\rightarrow probe total mass at the very core
- weak lensing
\rightarrow probe outskirts
of halos
(next lecture!)

Summary

- solving lens equation in general is not easy (need sophisticated numerical techniques)
- behavior is easier to understand for circular symmetric cases
- strong lens systems essentially probe enclosed mass within the Einstein radius

Contents

I. Introduction \& basics of gravitational lensing
2. Strong lensing analysis
3. Weak lensing analysis
4. Cosmological applications

