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Strong vs weak lensing

• strong lensing
− observed for individual sources
− κ≳1 (Σ≳Σcr), near critical curves/caustics
− multiple images, high elongation/magnification

• weak lensing
− observed for ensemble of sources
− κ≪1 (Σ≪Σcr), far from critical curves/caustics
− no multiple image, tiny elongation/magnification
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Strong lens kinds
(partly) based on Master Lens Database
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Challenge in strong lensing analysis

• lens equation is ‘mapping’ between β and θ

~� = ~✓ � ~↵(~✓)

θ1

θ2

αθ

β
“source” (not observed)

“image” (observed)

• in many cases we want to know θ from β,
   but it is in general very difficult because
   − lens equation is non-linear in θ
   − solution is not unique (multiple images!)
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Strong lensing analysis

• circular symmetric lenses

• more realistic models

• numerical approach

• modeling strong lens systems
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Circular symmetric lenses (I)

• simple yet useful

then lens potential ψ becomes
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Circular symmetric lenses (II)

• deflection angle

→
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“image”
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Circular symmetric lenses (III)

• therefore, lens equation reduces to 1D eq.

� = ✓ � ↵(✓) = [1� ̄(< ✓)] ✓
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M2D(< ✓)
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note:
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θ
M2D(<θ)
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Circular symmetric lenses (IV)

• shear  [polar coords (θ1, θ2)=(θcosϕ, θsinϕ)]
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detA = (1� )2 � |�|2 = [1� ̄(< ✓)] [1 + ̄(< ✓)� 2(✓)]

Circular symmetric lenses (V)

• critical curves

tangential 
critical curve

radial 
critical curve

tangential critical curve 
is a solution for β=0

̄(< ✓E) = 1

θE: Einstein radius
θ1

θ2

θE

tangential
critical 
curve

radial
critical 
curve
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Solutions of lens equation

• lens equation is 1D equation

• ‘diagrammatic’ approach is useful to 
   understand how multiple solutions appear

θ

y

θ1

θ2θ3

−β

y=θ−β
y=α(θ)
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Example 1: point mass

• model for stars, compact galaxies, ...

θ

y

θ1

θ2

−β

y=θ−β
y=α(θ)

always two images
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Example 2: singular isothermal sphere

• standard lens model for galaxies

θ

y

θ1

θ2

−β

y=θ−βy=α(θ)

two images when |β|<θE

one image when |β|>θE
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Example 3: NFW profile

• standard lens model for dark matter halos

θ

y

θ1

θ2θ3

−β

y=θ−β
y=α(θ)

−βr
three images when |β|<βr

one image when |β|>βr
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More realistic models (I)

• elliptical lens

two approaches:

 1. elliptical density κ(u)
    κ(u) → ψ(θ), α(θ), ... through 1D integral
    computationally more expensive

 2. elliptical potential ψ(u)
    can use circular sym. result, much easier,
    but can cause unphysical mass distributions
    (‘dumbbell’-like κ map, negative κ, ....)

→ →→

16



⇡  X(�~✓0) + ~✓ · @ X

@~✓

����
�~✓0

+
1

2
~✓ ·H

h
 X(�~✓0)

i
· ~✓ + · · ·

H [ (✓)] =

✓
 11  12

 21  22

◆
=

✓
+ �1 �2
�2 � �1

◆

 X(~✓
0) =  X(~✓ � ~✓0)

More realistic models (II)

• external perturbation

  nearby object (X) 
  also contributes to 
  the lens potential

θ’

θ0θ

ψX

ψ

constant uniform α Hessian matrix
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More realistic models (III)

• therefore, the effect of X on the main lens 
   potential at θ, ψext(θ)=ψX(θ’), becomes

θ’

θ0θ

ψ

[again, polar coords (θ1, θ2)=(θcosϕ, θsinϕ)]

(ϕ0: polar angle corresponds
    to the direction to perturber)

ψX

ψext(θ)
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Numerical approach

• recall: solving lens equation is hard in general

~� = ~✓ � ~↵(~✓)

• numerical techniques to solve lens equation
   necessary

(β → θ is non-linear, multiple solutions allowed)
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Numerical root finding

source

~�i =
~✓i � ~↵(~✓i)

image plane (θi) source plane (βi)
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Numerical root finding

source

~�i =
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image plane (θi) source plane (βi)
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Numerical root finding

source

~�i =
~✓i � ~↵(~✓i)

image plane (θi) source plane (βi)
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Numerical root finding

source

image

~�i =
~✓i � ~↵(~✓i)

image plane (θi) source plane (βi)
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Resolution issue

image plane (θi)

critical curve

image plane (θi)

critical curve

fail to resolve 
multiple images

multiple images
resolved

⇒
refine 
grids
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Practical cases

2

Figure 1.1: Example of lens equation solving for point sources. I use square grids (thin black
lines) that are adaptively refined near critical curves to derive image positions for a given
source. Upper panels show image planes, and lower panels are corresponding source planes.
Critical curves and caustics are drawn by blue lines. Positions of sources and images are
indicated by red triangles. Left panels show an example from a simple mass model that
consist of NFW and SIE profiles. A source near the center is producing 7 lensed images. In
right panels, I add small galaxies to the primary NFW lens potential. This time 5 lensed
images are produced.

im
age plane (θ

i )
source plane (β

i )

example by glafic

• very high grid resolution
   needed only near critical
   curves

• adaptive grid for efficient
   lens equation solving

• left example successfully 
   identifies 7 lensed images
   of a single source
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Public lens softwares

• public softwares that implement adaptive grid:

• see also recent review of public softwares by
   Lefor et al. (arXiv:1206.4382) 

− glafic (M. Oguri)
   http://www.slac.stanford.edu/~oguri/glafic/
− GRAVLENS (C. R. Keeton)
   http://redfive.physics.rutgers.edu/~keeton/gravlens/
− LENSTOOL (E. Jullo, J.-P. Kneib, et al.)
   http://lamwws.oamp.fr/lenstool/
   .....
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Modeling strong lens systems (I)

• example: WFI2626-4536 (Morgan et al. 2004)

(HST image from CASTLES website)

4 image system
source quasar at z=2.23
lensing galaxy at z~0.4
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Modeling strong lens systems (II)

• assume Singular Isothermal Ellipsoid (SIE)
   plus external shear

• model parameters = 9
   (mass, SIE centroid, e, PAe, γext, PAγ, β)

• observational constraints = 13
   (image position × 4, galaxy position, 
    flux ratios × 3)

• degree of freedom = 13 − 9 = 4
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Modeling strong lens systems (III)

• search a best-fit model by χ2 minimization

• [advanced] trick: source plane χ2 minimization

computation much faster,  but # of images 
can be wrong (need cross-check) 
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Modeling strong lens systems (IV)

image plane source plane

• result obtained using glafic

• best-fit model has χ2/d.o.f = 6.4/4
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What does strong lens measure? (I)

• angular separation between images ≈ 2θE

‘symmetric’ 
configuration

≈2θE ≈2θE

‘asymmetric’ 
configuration

• therefore, multiple images provides good 
   measurements of the Einstein radius θE

31



Image separation and Einstein radius

image plane
(critical curves)

source plane
(caustics)

simulated by glafic

2θE
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image plane
(critical curves)

source plane
(caustics)

simulated by glafic

2θE

Image separation and Einstein radius
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image plane
(critical curves)

source plane
(caustics)

simulated by glafic

2θE

Image separation and Einstein radius
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image plane
(critical curves)

source plane
(caustics)

simulated by glafic

2θE

Image separation and Einstein radius
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image plane
(critical curves)

source plane
(caustics)

simulated by glafic

2θE

Image separation and Einstein radius
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image plane
(critical curves)

source plane
(caustics)

simulated by glafic

2θE

Image separation and Einstein radius
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image plane
(critical curves)

source plane
(caustics)

simulated by glafic

2θE

Image separation and Einstein radius
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image plane
(critical curves)

source plane
(caustics)

simulated by glafic

2θE

Image separation and Einstein radius
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1 = ̄(< ✓E) =
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⇡✓2ED
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What does strong lens measure? (II)

l.o.s.

θE
M2D(<θE)

• recall: the Einstein radius θE is determined by

→ strong lensing well constrains projected   
   2D mass within Einstein radius, M2D(< θE)
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Note: position of arcs

41

• sometimes people take positions of arcs θarc

   and assume θarc=θE

• this can be quite
   wrong, because arcs 
   can be produced 
   in asymmetric 
   configurations, and
   arcs are produced
   preferentially along
   the major axis... distribution of θarc for 

massive cluster with e=0.4
(simulated by glafic)

θE



What does strong lens measure? (III)

• on the other hand, radial density profile is 
   usually not very well constrained

θ

M2D(<θ)

θE

difficult to distinguish

• possible ways to constrain radial profiles
   (1) strong lenses with different zs  
   (2) more constraints (time delays, arcs, ...)
   (3) complementary mass probes (velocity
        dispersion, weak lensing, ...)
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Multiple zs

• multiple strongly lens systems in a same lens 
   constrains enclosed masses at different radii

θ

M2D(<θ)

θE(zs,1)
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θE(zs,2)

• useful to constrain radial profiles, and possibly 
   cosmological parameters as well, particularly 
   if combined with other radial profile probes

M2D,1

M2D,2



Multiple zs: examples

44

SDSSJ0946+1006
‘double Einstein ring’

(Gavazzi et al. 2008)

lens at z=0.222

source at z=0.609

source at z~3

Abell 1703
(Richard et al. 2009; 
Oguri et al. 2009)



Multiple probes

• velocity dispersion
→ probe total mass
    at the very core

• weak lensing
→ probe outskirts 
   of halos
   (next lecture!)

r

ρ(r)

velocity
dispersion

strong
lens

weak
lens
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Summary
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• solving lens equation in general is not easy
   (need sophisticated numerical techniques)

• behavior is easier to understand for circular
   symmetric cases

• strong lens systems essentially probe enclosed 
   mass within the Einstein radius 
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