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I.  Introduction & basics of gravitational lensing
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Intro: why gravitational lensing?

• the Universe is dominated by dark matter
  → lensing directly ‘see’ the invisible matter

• solid theoretical foundation: lensing phenomena
   robustly predicted for a given mass distribution 
   from the first principle 
   (general relativity, or even in modified gravity)

• pretty & impressive pictures!
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title

• text

First strong lens: Q0957+561 (Walsh et al. 1979)

4



First strong lens: Q0957+561 (Walsh et al. 1979)

©          Nature Publishing Group1979

spectra taken 
at KPNO 2.1m
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HST image

quasar image A

quasar image B

lensing galaxy

First strong lens: Q0957+561 (Walsh et al. 1979)
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M. Gladders et al.7



SDSS J1029+2623 
(HST ACS/WFC3)
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quasar image C

quasar image B

quasar image A

quasar host 
galaxy

lensed arcs

lensed arc

SDSS J1029+2623 
(HST ACS/WFC3)
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SDSS J1029+2623 
(HST ACS/WFC3)
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blue: dark matter distribution from weak lensing

SDSS J1029+2623 
(HST ACS/WFC3)
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Basics of gravitational lensing

• derivation of ‘lens equation’

• convergence, shear, magnification

• critical curves and caustics

• time delay
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Lens equation

• master equation of gravitational lensing

• starting point of (almost) all lensing studies

• derived unambiguously from General Relativity  
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Deriving lens equation: outline (I)

• metric (ɸ: Newtonian potential)

• geodesic equation

(←direction of light propagation)
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Deriving lens equation: outline (II)

• split into l.o.s. and angle coordinates

χ

θ

DA = afK(�)(note: angular diameter distance                   )
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Deriving lens equation: outline (III)

• 0-th component of the geodesic equation
   → cosmological+gravitational redshifts
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Integrated
Sachs-Wolfe
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Deriving lens equation: outline (IV)

• i-th component of the geodesic equation
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Deriving lens equation: outline (V)

• lens equation (assuming small def. angle)

~� = ~✓ � ~r✓ 

(deflection angle)

(lens potential)

θ1

θ2

projected 
coordinates 
on the sky

αθ

β
“source” (not observed)

“image” (observed)
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Connection to density fluctuations

• Laplacian of the lens potential

(Poisson eq.)
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Thin lens approximation

• lens potential dominated by a single object

lens (z=zl)

source 
(z=zs)

(surface mass density)

(critical surface density)

image
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Lens equation: summary (I)
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α

β

θ

lens (z=zl) source (z=zs)

image

observer (z=0)

α : deflection angle
ψ : lens potential
κ  : convergence
    (=projected density)
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Lens equation: summary (II)

• using Green’s function mass distribution

convergence κ

lens potential ψ

deflection angle α
.....

project 
l.o.s

Green’s
function

derivatives
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Properties of images

• lensed images are deformed by lensing

source β image θ

δβ
δθ

δθ=A−1δβ

δβ=Aδθ

A   : de-lensing
A−1: lensing

ψ11=∂2ψ/∂θ12 
etc.
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Convergence and shear

convergence

shear

κ>0 κ<0
source → image (A−1)

γ1>0 γ1<0

γ2>0 γ2<0
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Magnification

• lensing conserves surface brightness
  →magnification ∝ area

magnification μ (Lobs=μLori)
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~�c = ~�(~✓c)

detA(~✓c) = 0

Critical curves and caustics

• critical curves are defined by

(image plane)

• corresponding curves in the source plane
  (caustics) are

(source plane)

[magnification μ diverges on critical curves]
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Critical curves and multiple images

caustic 
(source plane)

critical curve
(image plane)

pair of images appear/disappear at critical curves
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Example: point source (quasar)

image plane
(critical curves)

source plane
(caustics)

simulated by glafic
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Example: point source (quasar)

image plane
(critical curves)

source plane
(caustics)

simulated by glafic
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Example: point source (quasar)

image plane
(critical curves)

source plane
(caustics)

simulated by glafic
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Example: point source (quasar)

image plane
(critical curves)

source plane
(caustics)

simulated by glafic
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Example: point source (quasar)

image plane
(critical curves)

source plane
(caustics)

simulated by glafic
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Example: extended source (galaxy)

image plane
(critical curves)

source plane
(caustics)

simulated by glafic
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Example: extended source (galaxy)

image plane
(critical curves)

source plane
(caustics)

simulated by glafic
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Example: extended source (galaxy)

image plane
(critical curves)

source plane
(caustics)

simulated by glafic
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Example: extended source (galaxy)

image plane
(critical curves)

source plane
(caustics)

simulated by glafic
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Example: extended source (galaxy)

image plane
(critical curves)

source plane
(caustics)

simulated by glafic
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Time delay

• different light paths have different travel time

• travel time difference can be measured for 
   time-variable sources (e.g., quasar)

ΔtA

ΔtB

image A

image B

source

ΔtAB=ΔtA−ΔtB
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Deriving time delay: outline (I)

• light travels null geodesic ds2=0

geometrical
time delay

gravitational
(Shapiro)
time delay
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Deriving time delay: outline (II)

• geometrical delay

θ−β

xs≈DA(zs)

xl≈DA(zl)

xls≈DA(zl,zs)

→
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Deriving time delay: outline (III)

• gravitational time delay

from the definition of lens potential ψ 
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Deriving time delay: outline (IV)

• cosmological time dilation

• total observed time delay is given by
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Time delay and H0

• time delay is known to provide a unique 
   probe of the absolute distance scale, H0

observe
(typically a 

few months)

observe (θ) + 
mass modeling

constraint on 
the distance ratio

∝ H0−1
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Mass-sheet degeneracy (I)

• consider the following transform
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• then other quantities transform as

observable



�tij ! ��tij (fixed H0)

�tij ! �tij (H0 ! �H0)

Mass-sheet degeneracy (II)

• on the other hand, time delays transform
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or

mass-sheet degeneracy is one of the most  
important systematics on H0 from time delays!



Strong vs weak lensing

• strong lensing
− observed for individual sources
− κ≳1 (Σ≳Σcr), near critical curves/caustics
− multiple images, high elongation/magnification

• weak lensing
− observed for ensemble of sources
− κ≪1 (Σ≪Σcr), far from critical curves/caustics
− no multiple image, tiny elongation/magnification
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Summary

47

• lens equation is a key equation for various 
   lensing analysis

• it is essentially a mapping between source 
   and image, and is derived from geodesic    
   equation

• explained several key concepts: convergence,
   shear, magnification, critical curves, caustics,
   time delays, ....



Contents
1. Introduction & basics of gravitational lensing

2. Strong lensing analysis

3. Weak lensing analysis

4. Cosmological applications

48


