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Intro: why gravitational lensing?

e the Universe is dominated by dark matter
— |lensing directly ‘see’ the invisible matter

® solid theoretical foundation: lensing phenomena
robustly predicted for a given mass distribution
from the first principle
(general relativity, or even in modified gravity)

® pretty & impressive pictures!
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First strong lens: Q0957+%561 (Walsh et al. 1979)
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First strong lens: Q0957+561 (Walsh et al. 1979)
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First strong lens: Q0957+561 (Walsh et al. 1979)
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Basics of gravitational lensing

® derivation of ‘lens equation’
® convergence, shear, magnification
® critical curves and caustics

® time delay
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Lens equation

® master equation of gravitational lensing
e starting point of (almost) all lensing studies

® derived unambiguously from General Relativity
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Deriving lens equation: outline (l)

® metric (¢: Newtonian potential)

2 2 o
ds® = — (1 | ¢> cAdt* + a® (1 f) vijdz' dx’
c

2

® seodesic equation

dp” o
N | F'uozﬁp pﬁ =0
dxt
w —
P=Tan
n' £ (<direction of light propagation)

a \/ %;jpipj
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Deriving lens equation: outline (Il)

® split into l.o.s. and angle coordinates

n' = (x, 0) L
vijdr'dr? = dx® + [z (x)wapd0*do”
1 0
fr(X) = —=sinh(=Kx) (K <0)
=x (K=0)

= %Sin(Kx) (K > 0)

(note: angular diameter distance D4 = afx (X))
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Deriving lens equation: outline (lll)

® 0-th component of the geodesic equation
— cosmological+gravitational redshifts

d(a*p)  2a°p* .

A B ?
E = hv = ap (1 _ f) O: observer

c? S:source

O
_.1+ZEsao{1¢<O>¢<S> 2/ M}

Eo ag c2 2 Jq

- ! ]
cosmological gravitational Integrated

redshift redshift Sachs-Wolfe
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Deriving lens equation: outline (1V)

¢ i-th component of the geodesic equation

d df“
—— (f%(x) ) 22’wab¢,b =0

dx dx C
2 X fK (XS _ X) b
— 6a — Qa / dX w“ ¢,b
c? Jo fre(X) fre(xs)
"""""" ea




Deriving lens equation: outline (V)

® lens equation (assuming small def. angle)
B=0— Vo
a6 ) = V1) (deflection angle)

Xs
Y= 22/ S (X = X) ¢ (lens potential)
“Jo fK (X) fr(xs)
024 §
projected R _I)mage (observed)
coordinates B/ \X
on the Sky “source” (not observed)

i >0
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Connection to density fluctuations

® Laplacian of the lens potential |density fluctuation

V2p = 4rGa’ps (Poisson eq.) /6=6p/p
— AnG X fK(Xs — X) B —
Vi =2 / d 256(x, 0

PV =2 | N feie P00

= x(f) (convergence)

more simply, Wallxt

k(0) :/dXWGL(X)5(X» 0) m

0 Xs
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Thin lens approximation

® lens potential dominated by a single object

. (0
k(0) = E( )
() = /dz5p(DA(zl)§, 2) (surface mass density)
Yer = i Dalz) (critical surface density)

47TG DA(ZZ, ZS)DA(ZZ)

iImage

—-
—-
-

— source
/ gt

lens (z=z)
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Lens equation: summary (l)

B =6—ab)
a(0) = Vi) X : deflection a.ngle
-, . P:lens potential
Vo =26(0)  « : convergence
(=projected density)  image
P T

observer (z=0) lens (z=z)) source (z=zs)
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Lens equation: summary (ll)

e using Green’s function

I T S T

w():-/d@ (@) In |G — @
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Properties of images

® [ensed images are deformed by lensing
A — 0p _ ( L =11 =912 ) W1=01P/00,?

o0 —1p12 1 — 199 ete.

(e o)
)2 Il —Krk+7
50=A"158
@ a5 A :de-lensing
N A~!:lensin
S . g
sourceg OB=A0
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Convergence and shear

A — 1_H3_’Yl —Y2
—72 l=Kk+m

source — image (A™')

convergence

% (Y11 + Ya22)

K

shear

= % (Y11 — 122)

Yo = P12
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Magnification

® |[ensing conserves surface brightness
—magnification « area

magnification Y (Lobs=HLori)

1
_ —1
S R C Ry R

WE\/W%JrV%
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Critical curves and caustics

e critical curves are defined by

—

detA(f.) = 0 (image plane)
[magnification M diverges on critical curves]

® corresponding curves in the source plane
(caustics) are

8. = 5(6.) (source plane)
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Critical curves and multiple images

2 O

critical curve caustic
(image plane) (source plane)

pair of images appear/disappear at critical curves
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simulated by glafic
Example: point source (quasar)
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simulated by glafic
Example: point source (quasar)
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simulated by glafic
Example: point source (quasar)
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simulated by glafic
Example: point source (quasar)
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simulated by glafic
Example: point source (quasar)
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simulated by glafic
Example: extended source (galaxy)
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simulated by glafic
Example: extended source (galaxy)
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simulated by glafic
Example: extended source (galaxy)
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simulated by glafic
Example: extended source (galaxy)
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Time delay

e different light paths have different travel time

e travel time difference can be measured for
time-variable sources (e.g., quasar)
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Deriving time delay: outline (I)

e light travels null geodesic ds?=0

2 o
cdt = (1 ¢> a dl dl = \/"}/ijdibzdxj

2

2
CAlens = Aiens 5 /gbadl
I | | C |
geometrical gravitational

time delay  (Shapiro)
time delay
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Deriving time delay: outline (ll)

® seometrical delay

o ~ L |2 A ens+is
cos|0 —fB|~1——-|0—p03] ~1 lens T
2 LT
Da(z1)Dal(zs) |7 3|2
— AZjens ™~ 0 —
] QDA(ZZ,ZS) 6
XS ~ DA(ZS) X|S ~ DA(Z|,ZS)
—_

xi=DAa(z)
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Deriving time delay: outline (lll)

® gravitational time delay

from the definition of lens potential P

fK X1 fK(XS) L DA(ZZ)DA(ZS)
/¢ = fK Xs — ) ajlw— DA(Zlazs) w
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Deriving time delay: outline (1V)

® cosmological time dilation
Atobs — (1 + Zl)Atlens

e total observed time delay is given by

DA(ZZ)DA(ZS) _1
DA(ZZ,ZS) _2

cAtons = (1 4 z;) 0— 3

, ]
— Y
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Time delay and Ho

® time delay is known to provide a unique
probe of the absolute distance scale, Ho

Du(z)Da(z) [11~ =2
cAtops = (1 + z7) ?)(jl()zl 2()2 ) 5 0—p| —
| | | L |
observe observe (0) +
(typically a mass modeling
few months)

constraint on

the distance ratio
x HO_I
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Mass-sheet degeneracy ()

e consider the following transform

— —

k(0) = Ax(0) + (1 — )

e then other quantities transform as

P(0) = Ap(0) + (1= A)
a(0) — Aa@(0) + (1 — \)
B— A3
Ya — AYa
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Mass-sheet degeneracy (ll)

® on the other hand, time delays transform
Atij — )\Atz’j (ﬁxed H())

or
Atij — Atij (H() — )\H())

mass-sheet degeneracy is one of the most
important systematics on Ho from time delays!
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Strong vs weak lensing

® strong lensing

— observed for individual sources
- K= | (2z2), near critical curves/caustics
— multiple images, high elongation/magnification

® weak lensing

— observed for ensemble of sources
- K< | (2«2), far from critical curves/caustics
— no multiple image, tiny elongation/magnification
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Summary

® lens equation is a key equation for various
lensing analysis

® it is essentially a mapping between source
and image, and is derived from geodesic

equation

e explained several key concepts: convergence,
shear, magnification, critical curves, caustics,

time delays, ....
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