Applications of gravitational lensing in astrophysics and cosmology

I. Introduction & basics of gravitational lensing

Masamune Oguri (Kavli IPMU, University of Tokyo)

Contents

I. Introduction & basics of gravitational lensing

- 2. Strong lensing analysis
- 3. Weak lensing analysis
- 4. Cosmological applications

Intro: why gravitational lensing?

- the Universe is dominated by dark matter
 → lensing directly 'see' the invisible matter
- solid theoretical foundation: lensing phenomena robustly predicted for a given mass distribution from the first principle (general relativity, or even in modified gravity)
- pretty & impressive pictures!

First strong lens: Q0957+561 (Walsh et al. 1979)

4

Both objects look blue, stellar, * ~17m.

First strong lens: Q0957+561 (Walsh et al. 1979)

spectra taken at KPNO 2.1m

First strong lens: Q0957+561 (Walsh et al. 1979)

SDSS JI029+2623 (HST ACS/WFC3)

SDSS J1029+2623 (HST ACS/WFC3)

quasar image B

lensed arcs

quasar host galaxy \

quasar image C

quasar image A

lensed arc

SDSS J1029+2623 (HST ACS/WFC3)

SDSS J1029+2623 (HST ACS/WFC3)

blue: dark matter distribution from weak lensing

Basics of gravitational lensing

- derivation of 'lens equation'
- convergence, shear, magnification
- critical curves and caustics
- time delay

Lens equation

- master equation of gravitational lensing
- starting point of (almost) all lensing studies
- derived unambiguously from General Relativity

Deriving lens equation: outline (I)

metric (φ: Newtonian potential)

$$ds^{2} = -\left(1 + \frac{2\phi}{c^{2}}\right)c^{2}dt^{2} + a^{2}\left(1 - \frac{2\phi}{c^{2}}\right)\gamma_{ij}dx^{i}dx^{j}$$

geodesic equation

$$\begin{split} \frac{dp^{\mu}}{d\lambda} &+ \Gamma^{\mu}{}_{\alpha\beta}p^{\alpha}p^{\beta} = 0\\ p^{\mu} &\equiv \frac{dx^{\mu}}{d\lambda}\\ n^{i} &\equiv \frac{p^{i}}{\sqrt{\gamma_{ij}p^{i}p^{j}}} \ \text{(\leftarrow direction of light propagation)} \end{split}$$

Deriving lens equation: outline (II)

• split into l.o.s. and angle coordinates

$$n^{i} = (\chi, \theta^{a})$$

$$\gamma_{ij} dx^{i} dx^{j} = d\chi^{2} + f_{K}^{2}(\chi) \omega_{ab} d\theta^{a} d\theta^{b}$$

$$f_{K}(\chi) = \frac{1}{-K} \sinh(-K\chi) \quad (K < 0)$$

$$= \chi \quad (K = 0)$$

$$= \frac{1}{K} \sin(K\chi) \quad (K > 0)$$

(note: angular diameter distance $D_A = af_K(\chi)$)

Deriving lens equation: outline (III)

- 0-th component of the geodesic equation
 - → cosmological+gravitational redshifts

Deriving lens equation: outline (IV)

i-th component of the geodesic equation

Deriving lens equation: outline (V)

• lens equation (assuming small def. angle)

$$\vec{\beta} = \vec{\theta} - \vec{\nabla}_{\theta}\psi$$

$$\vec{\alpha}(\vec{\theta}) \equiv \vec{\nabla}_{\theta}\psi \quad \text{(deflection angle)}$$

$$\psi \equiv \frac{2}{c^2} \int_0^{\chi_s} d\chi \frac{f_K(\chi_s - \chi)}{f_K(\chi) f_K(\chi_s)}\phi \quad \text{(lens potential)}$$

$$projected \\ coordinates \\ on the sky$$

$$\theta_1 \quad \text{``image'' (observed)} \\ \vec{\alpha} \quad \text{``source'' (not observed)} \\ \vec{\alpha} \quad \vec{\beta}_1 \quad \vec{\beta}$$

Connection to density fluctuations

density fluctuation

δ=δρ/ρ

• Laplacian of the lens potential

 $\vec{\nabla}^2 \phi = 4\pi G a^2 \bar{\rho} \delta$ (Poisson eq.)

$$\mathbf{J} \nabla_{\theta}^{2} \psi = 2 \times \frac{4\pi G}{c^{2}} \int_{0}^{\chi_{s}} d\chi \frac{f_{K}(\chi_{s} - \chi)}{f_{K}(\chi) f_{K}(\chi_{s})} a^{2} \bar{\rho} \delta(\chi, \vec{\theta})$$
$$\equiv \kappa(\vec{\theta}) \text{ (convergence)}$$

more simply, $\kappa(\vec{\theta}) = \int d\chi W_{\rm GL}(\chi) \delta(\chi, \vec{\theta})$ $W_{\rm GL}(\chi) \int (\chi, \vec{\theta}) \chi_{\rm GL}(\chi) \delta(\chi, \vec{\theta})$

Thin lens approximation

lens potential dominated by a single object

Lens equation: summary (I)

$$\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$$

$$\vec{\alpha}(\vec{\theta}) = \vec{\nabla}_{\theta}\psi$$

$$\vec{\nabla}_{\theta}^{2}\psi = 2\kappa(\vec{\theta})$$

$$\vec{\alpha} : \text{deflection angle}$$

$$\psi: \text{lens potential}$$

$$\kappa: \text{convergence}$$

$$(=\text{projected density}) \text{ image}$$

$$\vec{\theta}$$

$$\vec{\alpha}$$

$$\vec{\theta}$$

$$\vec{$$

Lens equation: summary (II)

using Green's function

$$\psi(\vec{\theta}) = \frac{1}{\pi} \int d\vec{\theta'} \kappa(\vec{\theta'}) \ln \left| \vec{\theta} - \vec{\theta'} \right|$$
$$\vec{\alpha}(\vec{\theta}) = \frac{1}{\pi} \int d\vec{\theta'} \kappa(\vec{\theta'}) \frac{\vec{\theta} - \vec{\theta'}}{\left| \vec{\theta} - \vec{\theta'} \right|^2}$$

mass distribution project l.o.s convergence K Green's function lens potential Ψ derivatives deflection angle $\vec{\alpha}$

Properties of images

lensed images are deformed by lensing

$$A \equiv \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \begin{pmatrix} 1 - \psi_{11} & -\psi_{12} \\ -\psi_{12} & 1 - \psi_{22} \end{pmatrix} \quad \begin{array}{l} \psi_{11} = \partial^2 \psi / \partial \theta_1^2 \\ \text{etc.} \\ \\ = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix} \end{array}$$

Magnification

lensing conserves surface brightness
 →magnification ∝ area

magnification μ (L_{obs}= μ L_{ori})

$$\mu \equiv (\det A)^{-1} = \frac{1}{(1-\kappa)^2 - |\gamma|^2}$$

$$|\gamma| \equiv \sqrt{\gamma_1^2 + \gamma_2^2}$$

Critical curves and caustics

• critical curves are defined by

 $det A(\vec{\theta_c}) = 0$ (image plane)

[magnification µ diverges on critical curves]

 corresponding curves in the source plane (caustics) are

$$\vec{\beta}_c = \vec{\beta}(\vec{\theta}_c)$$
 (source plane)

Critical curves and multiple images

critical curve caustic (image plane) (source plane)

pair of images appear/disappear at critical curves

image plane (critical curves)

image plane (critical curves)

image plane (critical curves)

image plane (critical curves)

image plane (critical curves)

image plane (critical curves)

Time delay

- different light paths have different travel time
- travel time difference can be measured for time-variable sources (e.g., quasar)

Deriving time delay: outline (I)

light travels null geodesic ds²=0

 $c \, dt = \left(1 - \frac{2\phi}{c^2}\right) a \, dl \qquad dl \equiv \sqrt{\gamma_{ij} dx^i dx^j}$ $c \Delta t_{\text{lens}} = \Delta x_{\text{lens}} - \frac{2}{c^2} \int \phi \, a \, dl$ $geometrical \qquad \text{gravitational} \\ \text{time delay} \qquad \text{(Shapiro)} \\ \text{time delay} \qquad \text{time delay}$

Deriving time delay: outline (II)

• geometrical delay

$$\cos\left|\vec{\theta} - \vec{\beta}\right| \simeq 1 - \frac{1}{2} \left|\vec{\theta} - \vec{\beta}\right|^2 \simeq 1 - \frac{\Delta x_{\text{lens}} x_{ls}}{x_l x_s}$$

$$\rightarrow \Delta x_{\text{lens}} \simeq \frac{D_A(z_l) D_A(z_s)}{2D_A(z_l, z_s)} \left|\vec{\theta} - \vec{\beta}\right|^2$$

$$x_s \approx \mathsf{D}_A(z_s)$$

$$x_{ls} \approx \mathsf{D}_A(z_l, z_s)$$

$$\vec{\theta} - \vec{\beta}$$

$$x_l \approx \mathsf{D}_A(z_l)$$

Deriving time delay: outline (III)

• gravitational time delay

from the definition of lens potential $\boldsymbol{\psi}$

$$\frac{2}{c^2} \int \phi \, a \, dl \simeq \frac{f_K(\chi_l) f_K(\chi_s)}{f_K(\chi_s - \chi_l)} a_l \psi = \frac{D_A(z_l) D_A(z_s)}{D_A(z_l, z_s)} \psi$$

Deriving time delay: outline (IV)

cosmological time dilation

 $\Delta t_{\rm obs} = (1+z_l)\Delta t_{\rm lens}$

• total observed time delay is given by

$$c\Delta t_{\rm obs} = (1+z_l) \frac{D_A(z_l) D_A(z_s)}{D_A(z_l, z_s)} \left[\frac{1}{2} \left| \vec{\theta} - \vec{\beta} \right|^2 - \psi \right]$$

Time delay and H_0

• time delay is known to provide a unique probe of the *absolute* distance scale, H₀

$$c\Delta t_{obs} = (1 + z_l) \frac{D_A(z_l)D_A(z_s)}{D_A(z_l, z_s)} \begin{bmatrix} \frac{1}{2} |\vec{\theta} - \vec{\beta}|^2 - \psi \end{bmatrix}$$

observe
(typically a
few months)
constraint on
the distance ratio
 $\approx H_0^{-1}$

Mass-sheet degeneracy (I)

 $\vec{\theta}$

observable

• consider the following transform

$$\kappa(\vec{\theta}) \to \lambda \kappa(\vec{\theta}) + (1 - \lambda)$$

• then other quantities transform as

$$\begin{split} \psi(\vec{\theta}) &\to \lambda \psi(\vec{\theta}) + (1-\lambda) \frac{\theta^2}{2} \quad \boxed{g_a \to g_a} \\ \vec{\alpha}(\vec{\theta}) &\to \lambda \vec{\alpha}(\vec{\theta}) + (1-\lambda) \vec{\theta} \quad \mu \to \lambda^{-2} \mu \\ \vec{\beta} &\to \lambda \vec{\beta} \quad \boxed{\mu_i / \mu_j \to \mu_i / \mu_j} \\ \gamma_a &\to \lambda \gamma_a \end{split}$$

Mass-sheet degeneracy (II)

- on the other hand, time delays transform
- $\Delta t_{ij} \to \lambda \Delta t_{ij} \pmod{\mathrm{H}_0}$

or

$$\Delta t_{ij} \to \Delta t_{ij} \quad (H_0 \to \lambda H_0)$$

mass-sheet degeneracy is one of the most important systematics on H₀ from time delays!

Strong vs weak lensing

- strong lensing
 - observed for individual sources
 - $\kappa \gtrsim I$ ($\Sigma \gtrsim \Sigma_{cr}$), near critical curves/caustics
 - multiple images, high elongation/magnification
- weak lensing
 - observed for ensemble of sources
 - $\kappa \ll I$ ($\Sigma \ll \Sigma_{cr}$), far from critical curves/caustics
 - no multiple image, tiny elongation/magnification

Summary

- lens equation is a key equation for various lensing analysis
- it is essentially a mapping between source and image, and is derived from geodesic equation
- explained several key concepts: convergence, shear, magnification, critical curves, caustics, time delays,

Contents

- I. Introduction & basics of gravitational lensing
- 2. Strong lensing analysis
- 3. Weak lensing analysis
- 4. Cosmological applications