Caustic crossings as a new probe of dark matter

Masamune Oguri Center for Frontier Science, Chiba University

024/10/15 Cosmic Indicators of Dark Matter@Tohoku

equation $\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$ $\ddot{}$ • multiple solution of **image position ^θ** for lens ➞ **multiple images**

Gravitational lensing by cluster

- massive concentration of dark matter
- useful site for studying dark matter

Gravitational lensing by cluster

Gravitational lensing by cluster

Abell 370, NASA/STScI

(Kawamata, <u>MO</u>+2016) 5

Critical curve and caustic

lens equation: mapping btw source and image

near critical curve/caustic → high magnification 6

Caustic

- concentration of reflected or refracted light
- in gravitational lensing, it is where
	- ⎼ magnification of a point source formally diverges
	- a pair of multiple images appear/disappear

Caustic crossing

Caustic crossing

Kelly+ (incl. MO) Nat. Ast. **2**(2018)334

Discovery of Icarus

Welch+ (incl. MO) Nature **603**(2022)815

Discovery of Earendel

Welch+ (incl. MO) Nature **603**(2022)815

 $W_{\rm eff}$ is the final wave \sim F110W \sim F110W \sim F110W \sim F110W \sim F110W \sim F140W \sim

Discovery of Earendel

Interpretation of caustic crossings

- caustic crossings look very simple, yet in fact they are not that simple because the mass distribution is not completely smooth
- non-smoothness due to stars responsible for **intra-cluster star** (**ICL**)
- tidal stripping of cluster member galaxies explains ICL

'Destruction' of critical curve $\sum_{i=1}^n$ √ ∠ ∪estruction of critical cu

• destruction of critical curve due to overlapping Einstein ered the optical depth of the optical depth of the optical depth ϵ radii of ICL stars

$$
\tau = \frac{\Sigma}{M} \pi \left(\sqrt{\mu_t} \theta_{\rm E} D_{ol} \right)^2 \left[\tau z \right] \rightarrow \text{saturation}
$$

Caustic crossing w/ ICL

Weisenbach, Anguita, Miralda-Escude, MO+ Space Sci. Rev. **220**(2024)57

Simulation

Weisenbach, Anguita, Miralda-Escude, MO+ Space Sci. Rev. **220**(2024)57

Caustic crossing lightcurves

Analytic model by the distance from the distance from the macro-critical curve or cause of the macro-critical curve or cause
All the macro-critical curve of the macro-critical curve or cause of the macro-critical curve of the macro-cri only a small fraction of the microlensies are in the microlensies are in the microlensies are in the microlens

tic, *e.g.*, Eq. (35), our model allows us to study how the • Assumption: caustic crossing proba $\overline{}$ as discussed in $\overline{}$ Proportional to humber of mueper micro-critic smaller than the size of the micro-critical curve, *i.e.*, the **• Assumpuo** proportional to number of independent factor is *represented* to the set of the high magnifical tensor is \mathbf{r} \mathbf{H} and \mathbf{C} is the PDF by combining \mathbf{C} cal curves. The vertical curves of the vertical black dashed in the vertical black dashed in the vertical sett
The vertical black dashed line is the vertical black dashed in the vertical black dashed in the vertical black • Assumption: caustic crossing probability is proportional to number of independent $P \leftarrow$ Ravlaigh dist smaller than the size of the micro-critical curve, *i.e.*, the micro-critical curves *N*★indep ← **Rayleigh dist.**

dP

$$
\frac{dP}{d\log_{10} r} \propto N_{\star}^{\text{indep}} \sqrt{\mu_{\text{av}}} r^{-2} S(r; r_{\text{max}})
$$

$$
\frac{S_{10}r}{\propto f_{\star}\kappa_{\rm tot}\exp(-f_{\star}\kappa_{\rm tot}\mu_{\rm av})\sqrt{\mu_{\rm av}r^{-2}}S(r;r_{\rm max})}
$$

. fraction **f**★ **: ICL fraction**

onvergence \mathcal{U} av \mathcal{U} **tot : convergence** $\mathbf{r} = \mu / \mu_{\mathbf{av}}$

defining the smooth background as a curve of the smooth background as a smooth background as a smooth background as $\int d^4x \, d^4x \, d^4x$ **parameter dependent** $\frac{10^{-5}}{2}$ $\frac{2}{\pi}$ $\frac{1}{\pi}$ in ray-tracing sim is $\frac{1}{10^{-3} \cdot 10^{-2} \cdot 10^{-1} \cdot 10^{0}}$ $\frac{1}{10^{1}}$ well reproduced! *d* log¹⁰ *r r* (68) *,* parameter dependence $r = \mu / \mu_{av}$ *^P* PS(*r>r*th) = ^Z ¹ well reproduced!

Probing DM with caustic crossings

- caustic crossing probability is sensitive to mass fraction *f*★ of compact objects
	- → **primordial black holes** (PBH)
- caustic corssings appear near critical curves of clusters, which are sensitive to small-scale dark matter distribution
	- → **warm dark matter** (WDM) **fuzzy dark matter** (FDM)

Kawai & MO, arXiv:2411.13816

Constraint on PBH

• constraints from event rate (w/o ICL)

Kawai & MO, arXiv:2411.13816 the total black dotted line indicates the position of the macro-critical curve, and the vertical black dashed ν line marks the location of Icarus. Left: variation in the maximum source radius, reflecting the maximum source r
The maximum source radius, reflecting the different performance radius, reflecting the different performance

Constraint on PBH

Critical curve and dark matter

Critical curve and dark matter $\bigcap_{\alpha:\alpha:\alpha\in\mathbb{Z}}$ LD, Venumadhav, Kaurov & Miralda-Escudé 18'

Critical curve and caustic crossings

25

Abe, Kawai, <u>MO</u> PRD **109**(2024)083517 Abe, Kawai, <u>MO</u> PRD **109**(2024)083517

Critical curve fluctuations **Designed** (x) 5 ⇥ ¹⁰⁶ ¹⁰¹¹ ⁰*.*¹¹² *[±]* ⁰*.*044 0*.*186 6*.*0⁰⁰ ⇥ ⁶*.*000, 10 realizations (xii) 5 ⇥ ¹⁰⁶ ¹⁰¹² ⁰*.*¹²⁹ *[±]* ⁰*.*041 0*.*291 6*.*0⁰⁰ ⇥ ⁶*.*000, 10 realizations (xi) 5 ⇥ ¹⁰⁶ ⁵ ⇥ ¹⁰¹¹ ⁰*.*¹²² *[±]* ⁰*.*0529 0*.*256 6*.*0⁰⁰ ⇥ ⁶*.*000, 10 realizations **Exitical curv** U_{S} \blacksquare

(ix) 5 ⇥ ¹⁰⁶ ⁶ ⇥ ¹⁰¹⁰ ⁰*.*¹²² *[±]* ⁰*.*044 0*.*170 6*.*0⁰⁰ ⇥ ⁶*.*000, 10 realizations

(x) 5 ⇥ ¹⁰⁶ ¹⁰¹¹ ⁰*.*¹¹² *[±]* ⁰*.*044 0*.*186 6*.*0⁰⁰ ⇥ ⁶*.*000, 10 realizations

 \blacksquare E-mail : Phone : that connects P(k) of critical 04/2020 - 03/2022 : • derive **an analytic formula** curve fluctuations with P(k) an vernaced actoris with r (15)
of DM small-scale density fluctuations! $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ inucluations:

critical curve fluctuations

$$
P_{\delta\theta_x} = \frac{3}{2\epsilon^2} P_{\delta\kappa} \qquad \epsilon \sim 1/\theta_{\text{Ein}}
$$

$$
\sim 1/\theta_{\text{Ein}}
$$

DM small-scale density fluctuations

 $\overline{}$ α *k* α mple cimulat 3 • formula validated with ith in the set of the s
Experiment of the set simple simulations

P(k) of CDM and WDM

• can be calculated with halo-model approach (e.g, Hezaveh+2016)

$$
P(k) = \int dM \frac{dn}{dM} \left| \tilde{u}(k) \right|^2
$$

subhalo mass function Fourier transform of NFW profile

P(k) of FDM?

• wave effect below de Broglie wavelength

$$
\lambda_{\text{dB}} = \frac{h}{mv} = 180 \,\text{pc} \left(\frac{m}{10^{-22} \,\text{eV}} \right)^{-1} \left(\frac{v}{1000 \,\text{km/s}} \right)^{-1}
$$

• dark matter halo consists of quantum clumps with their size $\sim \lambda_{dB}$

simulation (Schive+2014)

Kawai, MO+ ApJ **925**(2022)61 awai, <u>MO</u>+ ApJ 925(2022)61 rai, <u>MO</u>+ ApJ **925**(2022)61

Analytic model of P(k) in FDM 396 tum clumps along the line of sight increases. The largest increases $\mathcal{L}_{\mathcal{A}}$ Δ palotic pacel of sight results in the line of sight results in the line of sight results in the sight result of Δ ANG SMALLER AMPLITUDE SPECIFIE $\sqrt{1}$, \cdot from the sub-galactic matter \mathbb{R} power spectrum. Two parameters *M*s*/M*^h and *m* are fixed as *M*s*/M*^h = 0*.*01 and *m* = 10²²eV, respectively. The position *x* is set to one-tenth of the virial radius of each halo, which *R* vir where G is the gravitational constant, Mtot is the total mass that

 394 the line of sight. As the total halo mass becomes larger, a

 395 the virial radius becomes larger and the number of q

dorivo P(L) accuming \mathbf{C} and \mathbf{C} is much smaller than \mathbf{C} $F(k) =$ \mathbf{a} 30 pci position of al. 2020 \overline{C} Gaussian clumps $r_h(x) =$ ⁴²³ matter power spectrum, which we discuss in Sec. 3. $\sum_{k=1}^{\infty} (k)$ $\frac{\sqrt{2}}{4\pi}$ $\frac{3}{3}$ $\frac{1}{2}$ $\frac{2}{k^2}$ $\frac{\Delta_h(\lambda)}{\lambda}$ **h** $\frac{\Delta_h(\lambda)}{\lambda}$ **d** $\frac{\Delta_h(\lambda)}{\lambda}$ **d** $\frac{\Delta_h(\lambda)}{\lambda}$ **d** $\frac{\Delta_h(\lambda)}{\lambda}$ $\Gamma_{i}(r) \perp \Gamma_{i}(r)$ $\left(\int d\tau a(r)\right)^2$ ⁴³⁶ in Sec. 3.2, and the future prospect in Sec. 3.3. $\int_{\mathcal{I}} d\mathbf{z} \rho_{\mathbf{k}}^2(r)$ $\int_{\mathcal{I}} d\mathbf{z} \rho_{\mathbf{k}}^2(r)$ $\mathcal{L}(k) = \left(\frac{\sum_{\mathbf{h}}(x)}{\sum_{\mathbf{h}}(x) + \sum_{\mathbf{h}}(x)} \right)$ $(x) + \Sigma_{b}(x)$) 3r_h (x) $P(k) = \left(\frac{\Sigma_{h}(x)}{\sum_{k=1}^{n} \Sigma_{k}^{k}}\right)^{2} \frac{4\pi\lambda_{c}^{3}}{2\pi\lambda_{c}^{3}} \exp\left(-\frac{\lambda_{c}^{2}k^{2}}{4}\right)^{3}$ $x) + \Sigma_{\rm b}(x)$) 3r_h(x) $4\pi\lambda_c^3$ $\left(\lambda_c^2k\right)$ $\frac{\hbar(x)}{\hbar}$ $\left(\frac{4\pi\lambda_c}{3r_h(x)}\exp\left(-\frac{\lambda_c k^2}{4}\right)\right)$ $h(x) + \Delta_b$ 2 c 3 h $\pi \lambda_c^3$ **a** $\left(\lambda_c^2 k^2\right)$ \equiv \sum $\Sigma_{h}(x) + \Sigma$ $\left(\frac{\Delta_h(x)}{\sum_{(x)} |\sum_{(x)}^n} \right) \frac{4\pi \Delta_c}{2\pi (x)} \exp \left(-\frac{\Delta_c \Delta_c}{4} \right)$ $\overline{\mathcal{L}}$ ⎞ $\overline{}$ $\mathsf I$ $\overline{\mathcal{L}}$ ⎞ \overline{U} • derive P(k) assuming superposition of $\frac{\sum_{h} (x)}{\sum_{h} (x) + \sum_{h} (x)}$ $\left(\frac{\Sigma_{h}(x)}{2} \right)^{2} 4\pi \lambda_{c}^{3} \exp \left(-\frac{\lambda_{c}^{2} k^{2}}{2} \right)$ $\sqrt{\sum_{k}}$ $\frac{\sum_{\mathbf{h}}(x)}{\sum_{\mathbf{h}}(x)}$ $\frac{4\pi\lambda_c^3}{\exp{\left(-\frac{\lambda_c^2k^2}{k}\right)}}$ \sum $2-h(x)$ $f(x) = \frac{\sum_{h}^{2}(x)}{\sum_{r}^{2}(x)} = \frac{\left(\int_{Z} dz \rho_{h}(r)\right)^{2}}{\int_{Z}^{2}(x)}$ (r) (r) (r) $r_h(x) = \frac{\sum_h^2(x)}{r_h(x)} = \frac{\left(\int_Z dz \rho_h(r)\right)}{r_h(x)}$ dz $\rho_{\rm h}^2(r)$ dz ρ _h $(r$ $dz \rho_{\rm h}^2(r)$ *Z Z Z* h h 2 h 2 h 2 $\int_Z dz \rho_h^2(r) \qquad \int_Z dz \rho_h^2$ \int $\rho_h^2(r)$ \int ρ ρ $\frac{1}{1}$ \sum $\frac{1}{1}$

Progress with JWST

- more caustic crossings needed to study DM
- **JWST** is the solution!

Fudamoto, Sun, Diego, Dai, MO+ arXiv:2404.08045

>40 lensed stars in "Dragon"

- Dragon Arc at z=0.725 behind Abell 370
- **>40 lensed stars** discovered from 2 epoch JWST obs. of Dragon!
- DM can be constrained in several ways

Broadhurst+ (incl. MO) arXiv:2405.19422

Constraint from skewness

Broadhurst+ (incl. MO) arXiv:2405.19422

Constraint from skewness **6 Broadhurst Exercise**

Summary

- caustic crossings are new phenomena reported for the first time in 2018
- highly magnified (~thousands) individual stars
- interpretation rather complicated, but their basic properties now understood thanks to the progress of theoretical studies
- they offer a new route to probe the nature of dark matter
	- sensitive to the PBH abundance
	- probe DM small scale density fluctuations