# Caustic crossings as a new probe of dark matter

Masamune Oguri
Center for Frontier Science, Chiba University





### Strong gravitational lensing



- multiple solution of **image position**  $\vec{\theta}$  for lens equation  $\vec{\beta} = \vec{\theta} \vec{\alpha}(\vec{\theta})$ 
  - → multiple images

# Gravitational lensing by cluster



# Gravitational lensing by cluster



Abell 370, NASA/STScI

# Gravitational lensing by cluster



#### Critical curve and caustic



$$\vec{\beta} = \vec{\theta} - \overrightarrow{\alpha}(\vec{\theta})$$





lens (dark matter)

#### magnification µ

$$\mu = \left[ \det \left( \frac{\partial \vec{\beta}}{\partial \vec{\theta}} \right) \right]^{-1} \det \left( \frac{\partial \vec{\beta}}{\partial \vec{\theta}} \right) \bigg|_{\vec{\theta} = \vec{\theta}} = 0 \qquad \vec{\beta}_{c} = \vec{\beta}(\vec{\theta}_{c})$$

#### critical curve $\theta_c$

$$\det\left(\frac{\partial\vec{\beta}}{\partial\vec{\theta}}\right)\bigg|_{\vec{\theta}=\vec{\theta}_{c}}=0$$

caustic 
$$\beta_c$$

$$\vec{\beta}_{\rm c} = \vec{\beta}(\vec{\theta}_{\rm c})$$

near critical curve/caustic → high magnification 6

#### Caustic

- concentration of reflected or refracted light
- in gravitational lensing, it is where
  - magnification of a point source formally diverges
  - a pair of multiple images appear/disappear



### Caustic crossing



image
(observed)

source
(not observed)

# Caustic crossing





- two multiple images disappear
- → asymmetric light curve



# Caustic crossing





 maximum mag. and width of the light curve is sensitive to source size





### Discovery of Icarus







single star(blue supergiant)at z=1.5



# Discovery of Earendel





- single star at z=6.2
- magnification  $\mu$ ~10000 (?)



## Discovery of Earendel



# Interpretation of caustic crossings

 caustic crossings look very simple, yet in fact they are not that simple because the mass distribution is not completely smooth

non-smoothness due to stars responsible for

intra-cluster star (ICL)

 tidal stripping of cluster member galaxies explains ICL





#### 'Destruction' of critical curve



 destruction of critical curve due to overlapping Einstein radii of ICL stars

$$au = rac{\Sigma}{M} \pi \left( \sqrt{\mu_{
m t}} \theta_{
m E} D_{ol} 
ight)^2 \quad ag{$ au \!\!\! > \!\!\! I} \; o \; {
m saturation}$$

# Caustic crossing w/ ICL





### Simulation



# Caustic crossing lightcurves





# Analytic model

• Assumption: caustic crossing probability is proportional to number of independent micro-critical curves  $N_{\star}^{\text{indep}} \leftarrow \text{Rayleigh dist.}$ 

$$rac{dP}{d\log_{10}r} \propto N_{\star}^{
m indep} \sqrt{\mu_{
m av}} \; r^{-2} S(r;r_{
m max}) \ \propto f_{\star} \kappa_{
m tot} \exp(-f_{\star} \kappa_{
m tot} \mu_{
m av}) \sqrt{\mu_{
m av}} r^{-2} S(r;r_{
m max})$$



parameter dependence in ray-tracing sim is well reproduced!

 $\mu_{av}$ : mean magnif.

S: finite source size effect

f\*: ICL fraction

 $\kappa_{\text{tot}}$ : convergence

 $\mathbf{r} = \mu / \mu_{av}$ 

# Probing DM with caustic crossings

- caustic crossing probability is sensitive to mass fraction  $f_*$  of compact objects
  - → primordial black holes (PBH)
- caustic corssings appear near critical curves of clusters, which are sensitive to small-scale dark matter distribution
  - → warm dark matter (WDM) fuzzy dark matter (FDM)



#### Constraint on PBH

constraints from event rate (w/o ICL)





#### Constraint on PBH



#### Critical curve and dark matter





#### Critical curve and dark matter



### Critical curve and caustic crossings



can measure critical curve shape with many caustic crossing



#### Critical curve fluctuations



 derive an analytic formula that connects P(k) of critical curve fluctuations with P(k) of DM small-scale density fluctuations!

critical curve fluctuations  $P_{\delta\theta_x} = \frac{3}{2\epsilon^2} P_{\delta\kappa} \qquad \epsilon \sim 1/\theta_{\rm Ein}$ 

**DM** small-scale density fluctuations

 formula validated with simple simulations

### P(k) of CDM and WDM

 can be calculated with halo-model approach (e.g, Hezaveh+2016)

$$P(k) = \int dM \frac{dn}{dM} \left| \tilde{u}(k) \right|^2$$

#### subhalo mass function Fourier transform of NFW profile



# P(k) of FDM?

wave effect below de Broglie wavelength

$$\lambda_{\text{dB}} = \frac{h}{mv} = 180 \,\text{pc} \left(\frac{m}{10^{-22} \,\text{eV}}\right)^{-1} \left(\frac{v}{1000 \,\text{km/s}}\right)^{-1}$$

• dark matter halo consists of quantum clumps with their size  $\sim \lambda_{dB}$ 



simulation (Schive+2014)



# Analytic model of P(k) in FDM

simulation (Schive+2014)



Gaussian clumps

• derive P(k) assuming 
$$P(k) = \left(\frac{\Sigma_{\rm h}(x)}{\Sigma_{\rm h}(x) + \Sigma_{\rm b}(x)}\right)^2 \frac{4\pi\lambda_{\rm c}^3}{3r_{\rm h}(x)} \exp\left(-\frac{\lambda_{\rm c}^2k^2}{4}\right)$$
 superposition of Gaussian clumps 
$$r_{\rm h}(x) = \frac{\Sigma_{\rm h}^2(x)}{\int_{\rm Z} dz \; \rho_{\rm h}^2(r)} = \frac{\left(\int_{\rm Z} dz \; \rho_{\rm h}(r)\right)^2}{\int_{\rm Z} dz \; \rho_{\rm h}^2(r)}$$

## Progress with JWST





- more caustic crossings needed to study DM
- JWST is the solution!



### >40 lensed stars in "Dragon"



- stars in 2023
  stars in 2022
  stars in Kelly+22
  Mask: bright foregrounds
  Mask: bulge region

- Dragon Arc at z=0.725 behind Abell 370
- >40 lensed stars
   discovered from
   2 epoch JWST obs.
   of Dragon!
- DM can be constrained in several ways



#### Constraint from skewness





#### Constraint from skewness



### Summary

- caustic crossings are new phenomena reported for the first time in 2018
- highly magnified (~thousands) individual stars
- interpretation rather complicated, but their basic properties now understood thanks to the progress of theoretical studies
- they offer a new route to probe the nature of dark matter
  - sensitive to the PBH abundance
  - probe DM small scale density fluctuations