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Expected halo profile in ΛCDM

http://www.mpa-garching.mpg.de/galform/millennium/

Cuspy 
 so-called NFW profile, 
 slope gets shallower 
 toward the center 

Concentration 
 correlated with mass,  
 more massive halos  
 are less concentrated 

Triaxial 
 not spherical, highly 
 elongated 

http://www.mpa-garching.mpg.de/galform/millennium/


Umetsu, Takada & Broadhurst (2007)
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FIG. 1.— Convergence profiles of the triaxial halo with the virial mass
Mvir = 1015h−1M⊙, the concentration parameter ce = 1.15, and the triaxial
axis ratios of a/c = 0.4 and b/c = 0.7. The halo is placed at zl = 0.3, and we
assume the source redshift of zs = 1.0. We consider the projection along each
of the three principal axes: from upper to lower the dashed lines show profiles
projected along z, y, and x (see eq. [1]), respectively. The convergence profile
of the corresponding spherical NFW halo is also plotted by the solid line
for comparison (see text for details). The vertical arrow indicates the virial
radius.

physical scale of 129h−1kpc for A1689 (redshift z = 0.18).

2. A SIMPLE ESTIMATION OF THE HALO TRIAXIALITY EFFECT
ON LENSING MEASUREMENTS

Before going to the analysis of A1689, we make a sim-
ple test to demonstrate how important the halo triaxiality is
in constraining mass profiles from a two-dimensional lensing
measurement. The analysis is somewhat similar to that done
by Clowe et al. (2004) who used high-resolution N-body sim-
ulations of massive clusters. Here we instead use an analytic
model of aspherical dark halos.
We consider a triaxial halo with the virial mass Mvir =

1015h−1M⊙
7, placed at zl = 0.3, and adopt the model mass

profile given in JS02:

ρ(R) = δceρcrit(z)
(R/R0)(1+R/R0)2

, (1)

R2 ≡ c2
(

x2

a2
+
y2

b2
+
z2

c2

)

(a≤ b≤ c). (2)

We adopt typical model parameters for a halo of 1015h−1M⊙:
the triaxial axis ratios are a/c = 0.4 and b/c = 0.7, and
the concentration parameter ce ≡ Re/R0, where Re is de-
fined such that the mean density enclosed within the ellip-
soid of the major axis radius Re is ∆eΩ(z)ρcrit(z) with ∆e =
5∆vir

(

c2/ab
)0.75, is chosen to be ce = 1.15. We have checked

that the spherically-averaged radial mass profile of the triaxial
halo is quite similar to the spherical NFW profile that is spec-
ified by the virial radius rvir = Re/0.45, as proposed in JS02,
and the concentration parameter cvir = 4. However, it is non-
trivial for these triaxial and spherical models whether to yield
7 The virial mass is defined by spherically averaging the halo mass dis-

tribution (the triaxial mass profile for our case) around the halo center and
then by finding the sphere inside which the mean overdensity reaches ∆vir
predicted in the top-hat spherical collapse model.

FIG. 2.— Constraint contours in the virial mass and halo concentration
parameter space, obtained by fitting the mock data of triaxial halos to the
spherical NFW halo model. The contours show 68%, 95%, 99.7% confidence
limits (corresponding to∆χ2 = 2.3,6.17 and 11.8, respectively). From left to
right, the constraint contours from the convergence profiles of the triaxial halo
projected along the principal axes x, y, and z (as in Figure 1), respectively,
are shown. For comparison, the square symbol shows the best-fitting model
for the convergence profile obtained by projecting the a priori spherically-
averaged mass profile of the input triaxial halo.

similar lensing maps as a result of the line-of-sight projec-
tion8. To make this clear, Figure 1 compares the circularly-
averaged convergence profiles for the spherical and triaxial
halos. For the triaxial halo, we consider the projection along
each of the three principal axes. It is clear that the surface
mass density of the triaxial halo depends strongly on the pro-
jection direction. Therefore it is quite likely that adopting a
spherical halo model causes a bias in estimating the mass and
profile parameters for an individual cluster in reality.
To see this more clearly, we perform the following test.

First, we generate an “observed” surface mass density pro-
file: We consider 20 bins logarithmically spacing over the
range r = [10−2,1]h−1Mpc, and generate the convergence pro-
file κ(r), where the mean value for each bin is taken from the
triaxial halo model and the Gaussian random error of stan-
dard deviation ∆(log10κ) = 0.1 is added to each bin. Then,
assuming the spherical NFW density profile, we constrain the
virial mass (Mvir) and halo concentration parameter (cvir) by
fitting the model predictions to the “observed” profile. The
constraint contours in theMvir −cvir plane are shown in Figure
2, demonstrating that the best-fit parameters depend strongly
on the projection direction. For example, the convergence
profile projected along the major (minor) axis yields a sig-
nificant overestimation (underestimation) by 20−30% in both
the mass and concentration parameters. It should be noted
that the bias direction is orthogonal to the degeneracy direc-
tion of the error ellipse, implying the systematics is very im-
portant. In fact, we fail to recover the model parameters of
the spherically-averaged triaxial profile at more than 3-σ level
when the halo is projected along the major- or minor-axis di-
8 The lensing convergence field κ(r) is given in terms of the surface mass

density Σ(r) as κ(r) ≡ Σ(r)/Σcr , where Σcr is the lensing critical density
specified for a background cosmology and lens and source redshifts (see
Schneider et al. 1992).

Impact of triaxiality on lensing

(fitting mock lens signals)

lensing-derived masses and concentrations 
(assuming spherical halo) are significantly  
affected by the orientation of the cluster!

Oguri, Takada, Umetsu & Broadhurst (2005)
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High concentration controversy
High concentrations inconsistent with ΛCDM?

Yes 
 Broadhurst et al. (2005) 
 Comerford & Natarajan (2007) 
 Broadhurst & Barkana (2008) 
 Broadhurst et al. (2008) 
 Oguri et al. (2009) 
 Sereno et al. (2010) 
 Zitrin et al. (2011) 
 Umetsu et al. (2011) 
 Meneghetti et al. (2011) 
 Gralla et al. (2011) [talk by M. Gralla]

No 
 Oguri et al. (2005) 
 Oguri & Blandford (2009) 
 Corless et al. (2009) 
 Okabe et al. (2010) 
 Richard et al. (2010) 
 Morandi et al. (2011) 
 Sereno et al. (2011)

(blue: I’m involved)



Sloan Giant Arcs Survey (SGAS)

based on optical (red-sequence) clusters from the 
Sloan Digital Sky Survey 

look for strong lenses by visual inspection of  
SDSS or follow-up images  

>40 clusters with prominent giant arcs discovered, 
extensive arc spectroscopy w/ Gemini/GMOS 

Hennawi et al. (2008), Bayliss et al. (2011) 
Gladders et al., in prep.





Subaru/Suprime-cam follow-up
world best telescope  
for cluster weak lensing! 

gri-band imaging 
(g ~ 20min, r ~ 40min, i ~ 30min) 

~7 nights allocated from 
2007 to 2011 
(PI: M. Oguri) 

→ strong+weak lensing 
analysis for ~30 clusters



Example: SDSS0851
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Figure B1. SDSSJ0851+3331, SDSSJ0915+3826, SDSSJ0957+0509, SDSSJ1004+4112
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Figure B1. SDSSJ0851+3331, SDSSJ0915+3826, SDSSJ0957+0509, SDSSJ1004+4112
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Example: SDSS1138

24 M. Oguri et al.

Figure B3. SDSSJ1110+6459, SDSSJ1115+5319, SDSSJ1138+2754, SDSSJ1152+3313

c⃝ RAS, MNRAS 000, 1–21
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Figure B3. SDSSJ1110+6459, SDSSJ1115+5319, SDSSJ1138+2754, SDSSJ1152+3313
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Figure B3. SDSSJ1110+6459, SDSSJ1115+5319, SDSSJ1138+2754, SDSSJ1152+3313

c⃝ RAS, MNRAS 000, 1–21



Mass-concentration relation

our sample
from literature 
(Umetsu et al. 2011;  
 Zitrin et al. 2011) 
[talk by K. Umetsu]

ΛCDM prediction 
w/ lensing bias

mass dependence of cvir detected 
slope too steep? (cvir ∝ Mvir-0.59±0.12)  (cf. Okabe et al. 2010) 
cvir consistent w/ theoretical prediction at high mass 
low mass excess probably due to baryon cooling
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Figure 5. The mass-concentration relation obtained from com-
bined strong and weak lensing analysis. Filled triangles show our
results presented in this paper, whereas filled squares show re-
sults from literature; A1689, A370, CL0024, RXJ1347 (Umetsu
et al. 2011b), and A383 (Zitrin et al. 2011b). The black shaded
region indicates the predicted concentration parameters as a func-
tion of the halo mass with the lensing bias taken into account
(see Appendix A for details). The solid line is the best-fit mass-
concentration relation from fitting of our cluster sample (i.e., filled
triangles), with the 1σ range indicated by dotted lines.

Allen 2007; Buote et al. 2007; Ettori et al. 2010) analysis.
Our result suggests that the observed mass-concentration
relation is in reasonable agreement with the simulation re-
sults for very massive haloes of Mvir ∼ 1015h−1M⊙. The
agreement may be even better if we adopt recent results
of N-body simulations by Prada et al. (2011), who argued
that previous simulation work underestimated the mean
concentrations at high mass end (see also Appendix A).
In contrast, we find that observed concentrations are much
higher than theoretical expectations for less massive haloes
of Mvir ∼ 1014h−1M⊙, even if we take account of the mass
dependence of the lensing bias.

There are a few possible explanations for the excess
concentration for small mass clusters. Perhaps the most sig-
nificant effect is baryon cooling. The formation of the central
galaxy, and the accompanying adiabatic contraction of dark
matter distribution, enhances the core density of the clus-
ter and increases the concentration parameter value for the
total mass distribution. This effect is expected to be mass
dependent such that lower mass haloes are affected more
pronouncedly, simply because the fraction of the mass of
the central galaxy to the total mass is larger for smaller
halo masses. Indeed, simulations with radiative cooling and
star formation indicate that the concentration can be signifi-
cantly enhanced by baryon physics particularly for low-mass
haloes (e.g., Rudd, Zentner, & Kravtsov 2008; Mead et al.
2010). Thus baryon cooling appears to be able to explain
the observed strong mass dependence at least qualitatively,
although more quantitative estimates of this effect need to
be made using a large sample of simulated clusters with the
baryon physics included.

5 STACKING ANALYSIS

5.1 Stacked tangential shear profile

We can study the average properties of a given sample by
stacking lensing signals. This stacked lensing analysis has
been successful for constraining mean dark matter distri-
butions of cluster samples (e.g., Mandelbaum et al. 2006b;
Johnston et al. 2007; Leauthaud et al. 2010; Okabe et al.
2010). Here we conduct stacking analysis of the tangential
shear profile for our lensing sample for studying the mass-
concentration relation from another viewpoint. Note that
the off-centreing effect, which has been known to be one
of the most significant systematic errors in stacked lensing
analysis (e.g., Johnston et al. 2007; Mandelbaum, Seljak, &
Hirata 2008; Oguri & Takada 2011), should be negligible for
our analysis, because of the detection of weak lensing signals
for individual clusters and the presence of giant arcs which
assure that selected centres (positions of the brightest galax-
ies in the strong lensing region) indeed correspond to that
of the mass distribution.

We perform stacking in the physical length scale. Specif-
ically, we compute the differential surface density ∆Σ+(r)
which is define by

∆Σ+(r) ≡ Σcrg+(θ = r/Dol), (27)

where Σcr is the critical surface mass density for lens-
ing. We stack ∆Σ+(r) for different clusters to obtain the
average differential surface density. We do not include
SDSSJ1226+2149 and SDSSJ1226+2152 in our stacking
analysis, because these fields clearly have complicated mass
distributions with two strong lensing cores separated by only
∼ 3′. Furthermore, we exclude SDSSJ1110+6459 as well be-
cause the two-dimensional weak lensing map suggests the
presence of a very complicated mass distribution around the
system. We use the remaining 25 clusters for our stacked
lensing analysis.

It should be noted that the reduced shear g+ has a non-
linear dependence on the mass profile. In fact, the reduced
shear is defined by g+ ≡ γ+/(1 − κ), where γ+ and κ are
tangential shear and convergence. Thus, the quantity defined
by equation (27) still depends slightly on the source redshift
via the factor 1/(1 − κ), particularly near the halo centre.
Thus, in comparison with the NFW predictions, we assume
the source redshift of zs = 1.1, which is the typical effective
source redshift for our weak lensing analysis (see Table 3).
Also the non-linear dependence makes it somewhat difficult
to interpret the average profile, and hence our stacked tan-
gential profile measurement near the centre should be taken
with caution.

It is known that the matter fluctuations along the line-
of-sight contributes to the total error budget (e.g., Hoek-
stra 2003; Hoekstra et al. 2011; Dodelson 2004; Gruen et
al. 2011). While we have ignored this effect for the anal-
ysis of individual clusters presented in Section 4, here we
take into account the error from the large scale structure in
fitting the stacked tangential shear profile by including the
full covariance between different radial bins (see Oguri &
Takada 2011; Umetsu et al. 2011b, for the calculation of the
covariance matrix). We, however, comment that the error of
the large scale structure is subdominant in our analysis, be-
cause of the relatively small number density of background
galaxies after the colour cut (see also Oguri et al. 2010).

c⃝ RAS, MNRAS 000, 1–21



Stacked lensing analysis
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cluster 1 cluster 2 cluster 3
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combine weak lensing shear 
measurements for many clusters 

higher S/N, leading to accurate  
mean profile measurement
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Figure 6. The stacked tangential shear profile obtained by com-
bining the 25 clusters. The average differential surface density
⟨∆Σ+(r)⟩ (see equation 27) is plotted as a function of the phys-
ical radius r. Grey points indicate stacked tangential shear mea-
surements from weak lensing that are not used for fitting. The
upper left point with a horizontal error-bar is the constraint from
the average Einstein radius. The solid line with shading is the
best-fit NFW model with 1σ error range. The lower panel plots
the stacked profile of the 45◦ rotated component, ⟨∆Σ×(r)⟩.

Table 5. Summary of stacked tangential shear analysis

Sample N ⟨z⟩ ⟨θE⟩ ⟨Mvir⟩ ⟨cvir⟩
(arcsec) (1014h−1M⊙)

all 25 0.469 14.4+10.6
−7.0 4.57+0.33

−0.31 5.75+0.70
−0.57

θE-1 4 0.379 22.8+4.3
−2.8 6.03+0.74

−0.72 7.94+1.28
−1.02

θE-2 5 0.416 13.0+2.4
−2.8 3.13+0.50

−0.50 10.23+2.65
−1.82

θE-3 7 0.471 8.3+2.6
−2.4 3.51+0.52

−0.52 7.08+1.53
−1.12

Mvir-1 5 0.480 17.1+12.9
−6.4 9.55+1.17

−1.04 4.90+0.79
−0.73

Mvir-2 10 0.472 14.7+10.2
−5.7 5.62+0.61

−0.55 5.37+0.87
−0.75

Mvir-3 10 0.460 12.6+9.3
−7.8 1.97+0.32

−0.29 10.59+4.54
−2.83

In addition to weak lensing, we stack strong lensing con-
straints simply by averaging the Einstein radii for the fixed
source redshift zs = 2. This constraint is combined with
the stacked tangential shear profile from weak lensing to
obtain constraints on the mass and concentration param-
eter for the stacked profile. Note that the Einstein radius
is related with the reduced shear as g+(θE) = 1. Given
the uncertainty from the non-linearity of the reduced shear
and the the possible bias coming from the uncertainty of
the outer mass profile (Oguri & Hamana 2011; Becker &
Kravtsov 2011), we restrict tangential shear fitting in the
range 0.158h−1Mpc < r < 3.16h−1Mpc. However we note
that our results are not largely changed even if we conduct
fitting in the whole radius range.

Figure 6 shows the stacking result for all the 25 clusters.
The mean cluster redshift for this sample is ⟨z⟩ = 0.469.
The total signal-to-noise ratio in the whole radius range

Figure 7. Similar to Figure 6, but the stacked lensing analysis
in three θE bins is presented. From top to bottom, results for
largest to smallest θE bins are shown. Curves and points for the
largest and smallest θE bins are shifted vertically by ±0.5 dex
respectively for illustrative purposes.

Figure 8. Same as Figure 7, but clusters are binned in Mvir.

of 0.063h−1Mpc < r < 5.01h−1Mpc is S/N = 32. We
find that stacked tangential shear profile from weak lens-
ing is fitted well by the NFW profile over a wide range
in radius. The average Einstein radius from strong lens-
ing (⟨θE⟩ = 14.′′4+10.6

−7.0 ) is slightly larger than the best-
fit model predicts (θE = 9.′′1), although they are consis-
tent with each other well within 1σ. The best-fit mass and
concentration are ⟨Mvir⟩ = 4.57+0.33

−0.31 × 1014h−1M⊙ and
⟨cvir⟩ = 5.75+0.70

−0.57 . We note that the mean mass measured
by the stacking analysis agrees well with the mean mass of
strong lens selected clusters predicted by ray-tracing simu-
lations, ⟨Mvir⟩ ∼ 4.2×1014h−1M⊙ (Hennawi et al. 2007, see
also Bayliss et al. 2011b).

c⃝ RAS, MNRAS 000, 1–21



Stacked lensing analysis

ΛCDM prediction 
w/ lensing bias

best-fit M-c relation 
from individual 
analysis of clusters

consistent with individual analysis
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Figure 9. The mass-concentration relation obtained from the
stacked lensing analysis. We show stacking results of 3 θE bins
(filled squares) and 3 Mvir bins (open circles). The mass and con-
centration measured from stacked strong and weak lensing anal-
ysis of 4 massive clusters at z ∼ 0.32 (Umetsu et al. 2011b) are
indicated by a cross. The black shading region shows theoretically
expected mass-concentration relations with the lensing bias (see
Appendix A for details). The solid and dotted lines are bets-fit
relation from individual analysis shown in Figure 5.

Figure 10. Concentration parameters from stacking lensing anal-
ysis as a function of the Einstein radius for the source redshift
zs = 2. The black shading region indicates the theoretical ex-
pectation with the selection effect (see Appendix A for details).
Symbols are same as Figure 9.

The concentration parameter measured in the stacked
tangential shear profile is broadly consistent with the re-
sult of individual analysis (see Figure 5), but appears to be
slightly smaller than the mass-concentration relation con-
strained from our lensing sample. One of the possible reasons
for this is a wide range of θE of our sample, which results in
the large error on the mean Einstein radius and therefore in
the much weaker constraints from strong lensing compared
with individual modelling cases. Hence, we conduct the same
stacking analysis by dividing our cluster sample into 3 θE
bins. In order to assure reasonable constraints from strong
lensing, we remove 9 clusters which have large errors on θE
mostly because of the lack of arc redshift information. To

test the mass dependence of the concentration, in addition
to θE bins we consider 3 Mvir bins too. We use all the 25
clusters for the mass bin analysis.

Results of our stacking analysis in different θE and Mvir

bins are shown in Figures 7 and 8, respectively, and are
summarized in Table 5. We find that clusters in the largest
θE bin are indeed most massive. However, the second and
third θE bins have similar mean virial masses, and the dif-
ference of the Einstein radii appear to be derived by the
different concentrations. On the other hand, different mass
bins have similar Einstein radii, but the concentrations are
clearly larger for smaller masses.

These results can be used to check the mass-
concentration relation inferred from individual analysis of
clusters. Figure 9 shows the mass-concentration relation
similar to Figure 5, but this time the relation obtained
from stacked lensing analysis. We find that the mass-
concentration relation from stacking analysis is in reason-
able agreement with the best-fit relation constrained from
individual analysis of strong and weak lensing (equation 26).
In particular, the strong mass dependence of the concentra-
tion is clearly seen in the stacking analysis as well. Thus the
stacking analysis further confirms the measurement of the
mass-concentration relation from our sample of clusters.

In Figure 10 we study the dependence of concentration
parameters derived from the stacking analysis with the Ein-
stein radius. In particular we compare it with semi-analytic
calculation conducted in Appendix A which predicts that
the clusters with larger Einstein radii are more concentrated.
While it is hard to see this trend in our cluster sample, we
find that the high concentration of massive lensing clusters
presented by Umetsu et al. (2011b) can be explained in this
context. Our result suggests that the average concentration
of the Umetsu et al. (2011b) cluster sample is in good agree-
ment with the theoretical expectation given the very large
Einstein radii of θE ∼ 40′′.

5.2 Two-dimensional stacking analysis

In addition to stacking of the tangential shear profile, we
conduct stacking of two-dimensional (2D) shear maps to
study the mean shape of the projected dark matter dis-
tribution in clusters. Such 2D stacking analysis has been
attempted for samples of galaxies (Natarajan & Refregier
2000; Hoekstra et al. 2004; Mandelbaum et al. 2006a; Parker
et al. 2007) or for clusters (Evans & Bridle 2009). The
biggest problem of these 2D stacking analysis has been that
the position angle (orientation) of the projected mass distri-
bution has to be known for each cluster when stacking. In
previous work it was assumed that the position angle of the
mass distribution coincides with that of the light distribu-
tion, e.g., the surface brightness distribution of the central or
satellite galaxy distributions, although the assumption has
not yet been fully justified (Oguri et al. 2010; Bett 2011).

Our unique sample of strong and weak lensing clusters
provides an important means of overcoming this difficulty.
The idea is that strong lens modelling can generally con-
strain the position angle of the dark halo component quite
well, which can be used as a prior information for the po-
sition angle to stack weak lensing signals. This procedure
evades any assumptions on the alignment between mass and

c⃝ RAS, MNRAS 000, 1–21



Shape: 2D stacking analysis
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(No assumption on mass-light alignment!)



stacked 2D weak lensing map

stacking w/ random PAstacking w/ PA aligned
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Figure 11. The two-dimensional weak lensing shear maps obtained from stacking analysis of 25 clusters. The sticks shows observed
directions and strengths of weak lensing shear distortion. Colour contours are the surface density map reconstructed from the shear map
using the standard inversion technique (Kaiser & Squires 1993). Both the shear and density maps are smoothed for illustrative purpose.
Left: The result when the position angle of each cluster is aligned to the North-South axis before stacking, by using the position angle
measured in strong lens modelling. The resulting stacked density distribution is clearly elongated along the North-South direction. Right:

The result without any alignment of the position angle when stacking. The resulting density distribution is nearly circular symmetric in
this case.

light, and hence should enable much more robust 2D stack-
ing analysis.

As in Section 5.1, we conduct stacking analysis in the
physical length scale. For each cluster, we adopt the position
angle obtained in strong lens mass modelling (θe in Table 2)
to rotate the catalogue of the background galaxies by −θe
such that the the position angle of the dark halo is aligned
with the North-South axis. Specifically, the position of a
galaxy at (x, y) with respect to the cluster centre is changed
to

x′ = x cos θe + y sin θe, (28)

y′ = −x sin θe + y cos θe, (29)

and the two shear components (g1, g2) are modified as

g′1 = g1 cos 2θe + g2 sin 2θe, (30)

g′2 = −g1 sin 2θe + g2 cos 2θe. (31)

We stack the rotated shear catalogue in the physical unit,
Σcrg

′(r′), to obtain the average 2D shear map of our cluster
catalogue. The cluster catalogues analyzed in this section is
same as those in Section 5.1, containing 25 clusters in total.

The stacked 2D shear map, as well as the corresponding
density map reconstructed from the shear map, are shown
in Figure 11. As expected, the projected mass distribution
from the stacked 2D shear map is quite elongated along the
North-South direction, suggesting the highly elongated mass
distribution of our cluster sample. As a sanity check, we also
compute the 2D shear map without any alignment of the
position angle when stacking. The resulting mass distribu-
tion shown in Figure 11 appears to be circular symmetric,

which supports that the highly elongated distribution in our
stacked map is not an artifact.

We constrain the ellipticity of the projected 2D mass
distribution by directly fitting the 2D shear map with the
elliptical NFW model prediction. Here we closely follow the
procedure detailed in Oguri et al. (2010) for the 2D shear
fitting. Briefly, we modify the convergence κ(r) (i.e., the
projected surface mass density) of the spherical NFW pro-
file simply by introducing the ellipticity in the iso-density
contour as r2 → x2/(1 − e) + y2(1 − e). With this proce-
dure our definition of the ellipticity is e = 1 − b/a, where
a and b are major and minor axis lengths of the isoden-
sity contour. The corresponding shear pattern is computed
by solving the Poisson equation. We then construct pix-
elized distortion field by computing mean shear and errors
in each bin, and compare it with the elliptical model pre-
diction, adopting the pixel size of 0.1h−1Mpc. We add the
contribution of the large scale structure to the error covari-
ance matrix (see Oguri et al. 2010). We perform fitting in a
6h−1Mpc×6h−1Mpc region, but remove the innermost 4×4
pixels considering several possible systematics that might be
affecting signals near the centre. Unlike Oguri et al. (2010),
we fix the mass centre to the assumed centre (the position
of the brightest galaxy in strong lensing region), because
strong lensing available for our cluster sample allows a reli-
able identification of the mass centre for each cluster. Thus
we fit the 2D shear map with four parameters (Mvir, cvir, e,
θe), employing a Markov Chain Monte Carlo technique.

In Figure 12, we show the posterior likelihood distribu-
tion of the mean ellipticity ⟨e⟩ from the 2D stacking analysis
of all the 25 clusters. When the position angles are aligned,
the resulting density distribution is indeed quite elliptical

c⃝ RAS, MNRAS 000, 1–21



Constraint on mean ellipticity

Aligned PA: 
 e = 0.47 ± 0.06 

Random PA: 
 e < 0.19 

ellipticity detected 
at 5σ level 
mean ellipticity  
consistent w/ ΛCDM 
(cf. Oguri et al. 2010)

ΛCDM prediction 
(Jing & Suto 2002)



- NFW-like radial density profile (r-1 inner, r-3 outer) 
   observed profile consistent with NFW 

- concentration (low, correlated with mass) 
   steep mass dependence 
   consistent with ΛCDM at high mass 
   larger cvir at small mass, due to baryon cooling? 

- large non-sphericity (axis ratio a/c ~ 0.4) 
   excellent agreement with ΛCDM!

Summary: testing halo profiles





Importance of multiband imaging
cluster member galaxies dilute 
weak lensing signals  
(e.g., Medezinski et al. 2007) 

efficient background galaxy 
selection in color-color space 

use COSMOS photo-z catalog  
for determining cut, selecting 
z > 0.7 galaxies only
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and fit the PSF in each chunk independently with second
order bi-polynomials. The smear polarizability is corrected
by computing a scalar polarizability Ps from the trace of
the matrix, and then fitting Ps as a function of magnitude,
rg, and the galaxy ellipticity. For our weak lensing analysis,
we only use galaxies with ν > 15 and rh > r∗h + 2σ(r∗h),
where r∗h and σ(r∗h) are median and root-mean-square dis-
persion of half-light radii for the stars selected above. Given
the general tendency of the KSB algorithm to underestimate
the weak lensing shear (Erben et al. 2001; Heymans et al.
2006; Massey et al. 2007), we include a calibration factor of
1/0.9, i.e., this factor is multiplied to all the estimated shear
values. For each object we assign the statistical weight wg

defined by (e.g., Hamana et al. 2003; Miyazaki et al. 2007;
Hamana et al. 2009; Okabe et al. 2010; Okabe, Okura, &
Futamase 2010; Umetsu et al. 2010, 2011b).

wg =
1

σ2
g + α2

, (2)

with α = 0.4 and σg is the variance of the shear computed
from 20 neighbors in the magnitude-rg plane. When comput-
ing shear by averaging shear measurements of galaxies in a
bin, we also apply a 3σ clipping which appears to reduce the
shear measurement bias.

To check the accuracy of the weak lensing shear mea-
surement, we perform a series of image simulations. Specif-
ically, we generate a galaxy catalogue using the software
Stuff (Bertin 2009). Each galaxy is described by the sum
of bulge and disk components, which we model with Ser-
sic profiles with the index n = 4 and n = 1, respectively.
We also add stars in the catalogue. We convolve the im-
age with a PSF which we assume follows the Moffat pro-
file Σ(r) ∝ [1 + (r/a)2]−β with an elliptical extension.
Based on the catalogue, we generate a number of realistic
Subaru/Suprime-cam like images with different seeing sizes
(0.′′5–1.′′1) and β (3 < β < 12) using the software glafic

(Oguri 2010). We find that the resulting shear multiplica-
tive error (the parameter m in Heymans et al. 2006; Massey
et al. 2007) depends on both seeing size and β such that m
is smaller for larger seeing sizes or smaller β, but our algo-
rithm generally yields |m| ! 0.05 for a wide range of PSF
parameters examined here.

3.3 Galaxy selection in colour-colour space

A careful selection of background galaxies is essential for
cluster weak lensing studies, because contamination by clus-
ter member galaxies is known to dilute the detected weak
lensing signal significantly, particularly near the cluster cen-
tres (e.g., Broadhurst et al. 2005; Medezinski et al. 2007).
Our gri-band imaging is very powerful for reliable back-
ground galaxy selection, because we can select galaxies effi-
ciently in colour-colour space (Medezinski et al. 2010).

We determine the colour cut that is appropriate for our
cluster sample based on the COSMOS photometric galaxy
catalogue (Ilbert et al. 2009). Thanks to the wide wavelength
coverage from the ultraviolet to mid-infrared, the photomet-
ric redshifts are very accurate down to i ∼ 25. By inspecting
the photometric redshift distributions in each point of the
g− r versus r− i colour space, we determine the colour cut
for our analysis as

Figure 1. Upper: The colour cut selecting background galaxies
for weak lensing analysis (shading). The colour cut for red mem-
ber galaxy selection is indicated by dotted lines. The four regions
correspond to colour cuts for different cluster redshifts. Solid con-
tours indicate galaxy number density in the COSMOS catalogue
(i < 25). lower: Photometric redshift distributions of galaxies
in the COSMOS catalogue, before (dotted) and after (solid) the
colour cut.

g − r > 1 && r − i < 0.4(g − r)− 0.5, (3)

g − r < 0.3, (4)

r − i > 1.3, (5)

r − i > g − r, (6)

Figure 1 shows the cut and resulting COSMOS photometric
redshift distribution. It is seen that our cut efficiently selects
galaxies at z " 0.7, the redshifts higher than any cluster
redshifts in our sample. In our weak lensing analysis, we also
limit the range of r-band magnitude to 21 < r < rlim, where
the limiting magnitude rlim is determined from the galaxy
number counts of each cluster field image (see below).

In addition to background galaxies, we identify cluster
(red) member galaxies by the following criteria:
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image plane source plane

glafic  
  fast lens equation solver w/ adaptive grid 
  model optimization from observations 
  support various mass models 
  software is publicly available [Oguri (2010)]

URL: http://www.slac.stanford.edu/~oguri/glafic/

http://www.slac.stanford.edu/~oguri/glafic/


Effect of fitting region

best-fit for fiducial 
fitting box size

constraints do not change for smaller box sizes 
→ ellipticity does not change very much with radius

Combined strong and weak lensing analysis of 28 clusters 15

Figure 12. The marginalized probability distribution of the
mean ellipticity ⟨e⟩ from stacked weak lensing analysis of 25
clusters. The solid line indicates the case when the position an-
gles are aligned according to those measured with strong lens
modelling, in which the mean ellipticity is detected at 5σ level
(⟨e⟩ = 0.47± 0.06). The dashed line is the marginalized probabil-
ity distribution for stacking without any alignment of the position
angles, for which the mass distribution is consistent with the cir-
cular symmetric distribution (⟨e⟩ < 0.19). The vertical dotted
line indicates the theoretical expectation, ⟨e⟩ = 0.44, based on a
triaxial halo model of Jing & Suto (2002). The open circle with
errorbar shows the average ellipticity and 1σ scatter from strong
lens modelling.

with the mean ellipticity of ⟨e⟩ = 0.47 ± 0.06. We find that
the elliptical NFW model improve fitting by ∆χ2 = 26.9
compared with the case e = 0, which indicates that the
detection of the elliptical mass distribution is significant
at the 5σ level. The measured mean ellipticity is consis-
tent with the average ellipticity from strong lens modelling
⟨e⟩ = 0.38 ± 0.24, although the latter involves large scat-
ter. The best-fit position angle of θe = 9.1+3.9

−4.1 deg slightly
deviates from the expected position angle of θe = 0, but
they are consistent with each other within 2σ (∆χ2 < 4). In
contrast, if the position angles are not aligned in stacking
shear signals, the resulting constraint on the mean elliptic-
ity is ⟨e⟩ < 0.19, i.e., it is fully consistent with the circular
symmetric mass distribution e = 0 within 1σ.

We compare this result with the theoretical prediction
in the ΛCDM model. For this purpose we employ a triaxial
model of Jing & Suto (2002). Assuming that the halo orien-
tation is random, we compute the probability distribution
of the ellipticity by projecting the triaxial halo along arbi-
trary directions (Oguri et al. 2003; Oguri & Keeton 2004).
In this analysis we fix the mass and redshift of the halo to
Mvir = 4.6 × 1014h−1M⊙ and z = 0.469, which are mean
mass and redshift of the 25 clusters. We find that the mean
ellipticity predicted by this model is ⟨e⟩ = 0.44, in excellent
agreement with the measured ellipticity. The analysis pre-
sented in Appendix A indicates that the effect of the lensing
bias on the mean ellipticity is small, with a possible shift of
the mean ellipticity of ! 0.05 at most, and hence it does not
affect our conclusion. Our result is also in good agreement

Figure 13. The mean ellipticities measured in stacked 2D shear
map as a function of the box size for fitting. Our fiducial result and
its 1σ range adopting half the box size of 3h−1Mpc are indicated
by the horizontal line with shading.

Table 6. Summary of the two-dimensional stacking analysis

Sample ⟨e⟩ ⟨θe⟩
(deg)

all 0.47+0.06
−0.06 9.1+3.9

−4.1

θE-1 0.29+0.13
−0.18 14.1+13.9

−18.8

θE-2 0.70+0.05
−0.09 13.0+4.4

−4.3

θE-3 0.52+0.10
−0.14 6.7+12.2

−9.2

Mvir-1 0.58+0.04
−0.09 5.2+4.4

−4.5

Mvir-2 0.28+0.12
−0.14 9.7+11.3

−17.6

Mvir-3 0.60+0.09
−0.11 16.7+7.0

−8.7

with the previous lensing measurement of the ellipticity by
Oguri et al. (2010) in which 2D shear maps of individual
clusters are fitted with the elliptical NFW profile, rather
than examining the stacked shear map.

We check the sensitivity of our ellipticity result on the
size of the fitting region, as one possible concern is that
infalling matter associated with the filamentary structure
outside clusters might boost the mean ellipticity. Figure 13
shows how the constraint on the mean ellipticity changes by
making the size of the fitting region smaller from our fiducial
choice (half the box size of 3h−1Mpc). The Figure indicates
that the detection of the mean ellipticity of ∼ 0.45 is robust
against the choice of the fitting size, as the results are con-
sistent down to half the box size of ∼ 0.3h−1Mpc where the
constraint become significantly weak. The analysis also im-
plies that the ellipticity of the projected mass distribution
does not change very much with radius. Theoretically, dark
haloes are expected to be more elongated near the centre
(Jing & Suto 2002), although the effect of baryon cooling
and star formation can make the shape rounder particularly
near the centre (Kazantzidis et al. 2004; Lau et al. 2011).
Our detection of the elliptical mass distribution down to
small radii may therefore help constraining the amount of
cooling in clusters.
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