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• standard siren without redshift info with 
cross-correlation approach

    [MO Phys. Rev. D 93(2016)083511]

Plan of this talk

• effect of gravitational lensing on the 
distribution of binary black hole mergers    
[MO MNRAS 480(2018)3842]
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• I propose standard siren cosmology with 
cross-correlation of GW sources 
(known DL) and galaxies (known z)

• no follow-up needed for GW sources

Cross-correlation approach
MO Phys. Rev. D93(2016)083511



Cross-correlation approach
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Gravitational lensing as noise
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Apparent clustering due to lensing
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Cross-correlation signals
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Ctjgj (ℓ) =

∫ ∞

0
dzW t

i (z)

∫ z

0
dz′W g

j (z
′)Wκ(z′; z)

×
H(z′)

χ′2
bgPm

(

ℓ+ 1/2

χ′
; z′

)

. (20)

We use the linear power spectrum for Pm(k; z) in both
Csigj and Ctjgj . The power spectrum Csigj comes from
the first term of Eq. (8) and represents the physical corre-
lation of spatial distributions. On the other hand, Ctjgj ,
which comes from the second term of Eq. (8), is the cor-
relation of the weak lensing effect on luminosity distances
of GW sources with spectroscopic galaxies. Since all
matter fluctuations along the line-of-sight contributes to
weak lensing, it induces non-negligible cross-correlations
between luminosity and redshift bins which are well sep-
arated with each other.

III. RESULT

A. Cross-correlation signal

First it is useful to study the cross angular power spec-
trum Cwigj (ℓ) which is defined in Eq. (18). We fix the lu-
minosity distance bin of GW sources to that corresponds
to 0.9 < z < 1.1 in our fiducial cosmological model.
On the other hand, we move the central redshift of the
spectroscopic galaxy sample while fixing the bin width
to ∆z = 0.1 in order to see how the cross-correlation
signal changes as a function of the redshift of the spec-
troscopic galaxy sample. For bias parameters, we assume
a simple parametric form bGW(z) = bw1 + bw2/D(z) and
bg = bg1+bg2/D(z), whereD(z) is the linear growth rate,
and choose fiducial parameter values as bw1 = bw2 = 1
and bg1 = bg2 = 1.

Fig. 1 shows the cross-correlation power spectrum at
multiple ℓ = 100 as a function of the central redshift of
the spectroscopic galaxy sample zg. When the redshift of
the spectroscopic galaxy sample well overlaps with that of
GW sources, the cross-correlation signal becomes large.
In this case, the cross-correlation signal is dominated by
the physical correlation of density fields of GW sources
and spectroscopic galaxies, which corresponds to Csg de-
fined in Eq. (19). The cross-correlation signal is max-
imized when the luminosity distance bin best matches
with the redshift bin, from which we can infer the relation
between the luminosity distance and redshift. However,
Fig. 1 indicates that the cross-correlation signal extend
to much lower redshift of the spectroscopic galaxy sam-
ple. This extra correlation originates from Ctg defined
in Eq. (20). As stated above, this term represents the
correlation of galaxies and matter fluctuations along the
line-of-sight that induces weak gravitational lensing ef-
fect on luminosity distances of GW sources. We include
this large-distance cross-correlations in our Fisher matrix
analysis below.

FIG. 1: The cross-correlation power spectrum Cwg between
GW sources and galaxies [Eq. (18)]. The luminosity dis-
tance range of GW sources is fixed to that corresponds to
0.9 < z < 1.1 (gray shaded region) in our fiducial cosmol-
ogy. The spectroscopic galaxy sample has the redshift range
zg −∆z/2 < z < zg +∆z/2 with ∆z = 0.1. Solid line shows
the cross-correlation power spectrum at multipole ℓ = 100
as a function of the central redshift of the galaxy sample zg.
Dotted and dashed lines show contributions of Csg [Eq. (19)]
and Ctg [Eq. (20)] to Cwg, respectively.

B. Fisher matrix analysis

Here we estimate how well we can constrain the
distance-redshift relation and hence cosmological param-
eters from the cross-correlation analysis. For this pur-
pose we need the covariance matrix of auto- and cross-
correlation power spectra. Assuming Gaussian statistics,
the covariance matrix is given by

Cov
[

Cij(ℓ), Cmn(ℓ′)
]

=
4π

Ωs

δℓℓ′

(2ℓ+ 1)∆ℓ

×
(

C̃imC̃jn + C̃inC̃jm
)

,(21)

where the indices i, j, . . . run over wi and gi, Ωs is the
survey area, ∆ℓ is the width of ℓ bin, and C̃ denotes the
power spectrum including shot noise

C̃ij = Cij + δij
1

n̄i
, (22)

where n̄i is the projected number density given by
Eqs. (7) and (16).
With this covariance matrix, we can compute the

Fisher matrix as

Fαβ =
∑

ℓ

∑

i,j,m,n

∂Cij

∂pα

[

Cov
(

Cij , Cmn
)]−1 ∂Cmn

∂pβ
, (23)

where pα denotes cosmological and nuisance parameters.
A marginalized error on each parameter is obtained by
σ(pα) =

√

(F−1)αα.

4

Csitj (ℓ) =

∫ ∞

0
dzW t

j (z)

∫ z

0
dz′W s

i (z
′)Wκ(z′; z)

×
H(z′)

χ′2
bGWPm

(

ℓ+ 1/2

χ′
; z′

)

, (12)

Ctitj (ℓ) =

∫ ∞

0
dzW t

i (z)

∫ ∞

0
dz′ W t

j (z
′)

∫ min(z,z′)

0
dz′′

×Wκ(z′′; z)Wκ(z′′; z′)
H(z′′)

χ′′2
Pm

(

ℓ+ 1/2

χ′′
; z′′

)

, (13)

where Pm(k; z) is the matter power spectrum. Since we are interested in relatively large angular scales (ℓ ! 300), the
cross spectrum is dominated by the so-called two-halo term (see e.g., [31]), which suggests that we can use the linear
matter power spectrum for Pm(k; z) in Csisj and Csitj . On the other hand, Ctitj is given by a projection of all matter
fluctuations along the line-of-sight which mixes small and large scale fluctuations. Thus it may be more appropriate
to use the nonlinear matter power spectrum for Pm(k; z) in Ctitj . In this paper, we compute the transfer function of
the linear matter power spectrum using the result in [32], and the nonlinear matter power spectrum using the result
in [33].

D. Cross-correlation with spectroscopic galaxies

Next we consider a spectroscopic galaxy sample in the i-th bin defined by the redshift range zmin,i < z < zmax,i

δ2D,g
i (θ) =

∫ ∞

0
dzW g

i (z)δg(θ, z), (14)

where

W g
i (z) ≡

1

n̄g
i

χ2

H(z)
n̄g(z)Θ(z − zmin,i)Θ(zmax,i − z). (15)

Here the three-dimensional comoving number density of the spectroscopic galaxy sample is denoted by n̄g(z), and the
average projected number density in the i-th bin is simply computed as

n̄g
i =

∫ ∞

0
dz W g

i (z). (16)

In this paper we simply assume a constant number density of n̄g = 10−3h3Mpc−3 which resembles e.g., a spectroscopic
galaxy sample obtained by Euclid [34]. Using the Limber’s approximation, the angular power spectrum of spectroscopic
galaxies between i-th and j-th bins is given by

Cgigj (ℓ) = δij

∫ ∞

0
dz [W g

i (z)]
2 H(z)

χ2
b2gPm

(

ℓ+ 1/2

χ
; z

)

, (17)

where we assumed that there is no overlap of redshift ranges between different redshift bins, and bg is the bias
parameter for the spectroscopic galaxies.
We now consider the cross-correlation between the GW sources and the spectroscopic galaxies. From Eq. (8), we

can compute the cross-correlation power spectrum as

Cwigj (ℓ) = Csigj (ℓ) + Ctigj (ℓ) (18)
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
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where we assumed that there is no overlap of redshift ranges between different redshift bins, and bg is the bias
parameter for the spectroscopic galaxies.
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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We use the linear power spectrum for Pm(k; z) in both
Csigj and Ctjgj . The power spectrum Csigj comes from
the first term of Eq. (8) and represents the physical corre-
lation of spatial distributions. On the other hand, Ctjgj ,
which comes from the second term of Eq. (8), is the cor-
relation of the weak lensing effect on luminosity distances
of GW sources with spectroscopic galaxies. Since all
matter fluctuations along the line-of-sight contributes to
weak lensing, it induces non-negligible cross-correlations
between luminosity and redshift bins which are well sep-
arated with each other.

III. RESULT

A. Cross-correlation signal

First it is useful to study the cross angular power spec-
trum Cwigj (ℓ) which is defined in Eq. (18). We fix the lu-
minosity distance bin of GW sources to that corresponds
to 0.9 < z < 1.1 in our fiducial cosmological model.
On the other hand, we move the central redshift of the
spectroscopic galaxy sample while fixing the bin width
to ∆z = 0.1 in order to see how the cross-correlation
signal changes as a function of the redshift of the spec-
troscopic galaxy sample. For bias parameters, we assume
a simple parametric form bGW(z) = bw1 + bw2/D(z) and
bg = bg1+bg2/D(z), whereD(z) is the linear growth rate,
and choose fiducial parameter values as bw1 = bw2 = 1
and bg1 = bg2 = 1.

Fig. 1 shows the cross-correlation power spectrum at
multiple ℓ = 100 as a function of the central redshift of
the spectroscopic galaxy sample zg. When the redshift of
the spectroscopic galaxy sample well overlaps with that of
GW sources, the cross-correlation signal becomes large.
In this case, the cross-correlation signal is dominated by
the physical correlation of density fields of GW sources
and spectroscopic galaxies, which corresponds to Csg de-
fined in Eq. (19). The cross-correlation signal is max-
imized when the luminosity distance bin best matches
with the redshift bin, from which we can infer the relation
between the luminosity distance and redshift. However,
Fig. 1 indicates that the cross-correlation signal extend
to much lower redshift of the spectroscopic galaxy sam-
ple. This extra correlation originates from Ctg defined
in Eq. (20). As stated above, this term represents the
correlation of galaxies and matter fluctuations along the
line-of-sight that induces weak gravitational lensing ef-
fect on luminosity distances of GW sources. We include
this large-distance cross-correlations in our Fisher matrix
analysis below.

FIG. 1: The cross-correlation power spectrum Cwg between
GW sources and galaxies [Eq. (18)]. The luminosity dis-
tance range of GW sources is fixed to that corresponds to
0.9 < z < 1.1 (gray shaded region) in our fiducial cosmol-
ogy. The spectroscopic galaxy sample has the redshift range
zg −∆z/2 < z < zg +∆z/2 with ∆z = 0.1. Solid line shows
the cross-correlation power spectrum at multipole ℓ = 100
as a function of the central redshift of the galaxy sample zg.
Dotted and dashed lines show contributions of Csg [Eq. (19)]
and Ctg [Eq. (20)] to Cwg, respectively.

B. Fisher matrix analysis

Here we estimate how well we can constrain the
distance-redshift relation and hence cosmological param-
eters from the cross-correlation analysis. For this pur-
pose we need the covariance matrix of auto- and cross-
correlation power spectra. Assuming Gaussian statistics,
the covariance matrix is given by

Cov
[

Cij(ℓ), Cmn(ℓ′)
]

=
4π

Ωs

δℓℓ′

(2ℓ+ 1)∆ℓ

×
(

C̃imC̃jn + C̃inC̃jm
)

,(21)

where the indices i, j, . . . run over wi and gi, Ωs is the
survey area, ∆ℓ is the width of ℓ bin, and C̃ denotes the
power spectrum including shot noise

C̃ij = Cij + δij
1

n̄i
, (22)

where n̄i is the projected number density given by
Eqs. (7) and (16).
With this covariance matrix, we can compute the

Fisher matrix as

Fαβ =
∑

ℓ

∑

i,j,m,n

∂Cij

∂pα

[

Cov
(

Cij , Cmn
)]−1 ∂Cmn

∂pβ
, (23)

where pα denotes cosmological and nuisance parameters.
A marginalized error on each parameter is obtained by
σ(pα) =

√

(F−1)αα.
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We now consider the cross-correlation between the GW sources and the spectroscopic galaxies. From Eq. (8), we

can compute the cross-correlation power spectrum as
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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where Pm(k; z) is the matter power spectrum. Since we are interested in relatively large angular scales (ℓ ! 300), the
cross spectrum is dominated by the so-called two-halo term (see e.g., [31]), which suggests that we can use the linear
matter power spectrum for Pm(k; z) in Csisj and Csitj . On the other hand, Ctitj is given by a projection of all matter
fluctuations along the line-of-sight which mixes small and large scale fluctuations. Thus it may be more appropriate
to use the nonlinear matter power spectrum for Pm(k; z) in Ctitj . In this paper, we compute the transfer function of
the linear matter power spectrum using the result in [32], and the nonlinear matter power spectrum using the result
in [33].
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In this paper we simply assume a constant number density of n̄g = 10−3h3Mpc−3 which resembles e.g., a spectroscopic
galaxy sample obtained by Euclid [34]. Using the Limber’s approximation, the angular power spectrum of spectroscopic
galaxies between i-th and j-th bins is given by
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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where we assumed that there is no overlap of redshift ranges between different redshift bins, and bg is the bias
parameter for the spectroscopic galaxies.
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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We use the linear power spectrum for Pm(k; z) in both
Csigj and Ctjgj . The power spectrum Csigj comes from
the first term of Eq. (8) and represents the physical corre-
lation of spatial distributions. On the other hand, Ctjgj ,
which comes from the second term of Eq. (8), is the cor-
relation of the weak lensing effect on luminosity distances
of GW sources with spectroscopic galaxies. Since all
matter fluctuations along the line-of-sight contributes to
weak lensing, it induces non-negligible cross-correlations
between luminosity and redshift bins which are well sep-
arated with each other.

III. RESULT

A. Cross-correlation signal

First it is useful to study the cross angular power spec-
trum Cwigj (ℓ) which is defined in Eq. (18). We fix the lu-
minosity distance bin of GW sources to that corresponds
to 0.9 < z < 1.1 in our fiducial cosmological model.
On the other hand, we move the central redshift of the
spectroscopic galaxy sample while fixing the bin width
to ∆z = 0.1 in order to see how the cross-correlation
signal changes as a function of the redshift of the spec-
troscopic galaxy sample. For bias parameters, we assume
a simple parametric form bGW(z) = bw1 + bw2/D(z) and
bg = bg1+bg2/D(z), whereD(z) is the linear growth rate,
and choose fiducial parameter values as bw1 = bw2 = 1
and bg1 = bg2 = 1.

Fig. 1 shows the cross-correlation power spectrum at
multiple ℓ = 100 as a function of the central redshift of
the spectroscopic galaxy sample zg. When the redshift of
the spectroscopic galaxy sample well overlaps with that of
GW sources, the cross-correlation signal becomes large.
In this case, the cross-correlation signal is dominated by
the physical correlation of density fields of GW sources
and spectroscopic galaxies, which corresponds to Csg de-
fined in Eq. (19). The cross-correlation signal is max-
imized when the luminosity distance bin best matches
with the redshift bin, from which we can infer the relation
between the luminosity distance and redshift. However,
Fig. 1 indicates that the cross-correlation signal extend
to much lower redshift of the spectroscopic galaxy sam-
ple. This extra correlation originates from Ctg defined
in Eq. (20). As stated above, this term represents the
correlation of galaxies and matter fluctuations along the
line-of-sight that induces weak gravitational lensing ef-
fect on luminosity distances of GW sources. We include
this large-distance cross-correlations in our Fisher matrix
analysis below.

FIG. 1: The cross-correlation power spectrum Cwg between
GW sources and galaxies [Eq. (18)]. The luminosity dis-
tance range of GW sources is fixed to that corresponds to
0.9 < z < 1.1 (gray shaded region) in our fiducial cosmol-
ogy. The spectroscopic galaxy sample has the redshift range
zg −∆z/2 < z < zg +∆z/2 with ∆z = 0.1. Solid line shows
the cross-correlation power spectrum at multipole ℓ = 100
as a function of the central redshift of the galaxy sample zg.
Dotted and dashed lines show contributions of Csg [Eq. (19)]
and Ctg [Eq. (20)] to Cwg, respectively.

B. Fisher matrix analysis

Here we estimate how well we can constrain the
distance-redshift relation and hence cosmological param-
eters from the cross-correlation analysis. For this pur-
pose we need the covariance matrix of auto- and cross-
correlation power spectra. Assuming Gaussian statistics,
the covariance matrix is given by

Cov
[

Cij(ℓ), Cmn(ℓ′)
]

=
4π

Ωs

δℓℓ′

(2ℓ+ 1)∆ℓ

×
(

C̃imC̃jn + C̃inC̃jm
)

,(21)

where the indices i, j, . . . run over wi and gi, Ωs is the
survey area, ∆ℓ is the width of ℓ bin, and C̃ denotes the
power spectrum including shot noise

C̃ij = Cij + δij
1

n̄i
, (22)

where n̄i is the projected number density given by
Eqs. (7) and (16).
With this covariance matrix, we can compute the

Fisher matrix as

Fαβ =
∑

ℓ

∑

i,j,m,n

∂Cij

∂pα

[

Cov
(

Cij , Cmn
)]−1 ∂Cmn

∂pβ
, (23)

where pα denotes cosmological and nuisance parameters.
A marginalized error on each parameter is obtained by
σ(pα) =

√

(F−1)αα.
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where Pm(k; z) is the matter power spectrum. Since we are interested in relatively large angular scales (ℓ ! 300), the
cross spectrum is dominated by the so-called two-halo term (see e.g., [31]), which suggests that we can use the linear
matter power spectrum for Pm(k; z) in Csisj and Csitj . On the other hand, Ctitj is given by a projection of all matter
fluctuations along the line-of-sight which mixes small and large scale fluctuations. Thus it may be more appropriate
to use the nonlinear matter power spectrum for Pm(k; z) in Ctitj . In this paper, we compute the transfer function of
the linear matter power spectrum using the result in [32], and the nonlinear matter power spectrum using the result
in [33].

D. Cross-correlation with spectroscopic galaxies
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Here the three-dimensional comoving number density of the spectroscopic galaxy sample is denoted by n̄g(z), and the
average projected number density in the i-th bin is simply computed as
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i (z). (16)

In this paper we simply assume a constant number density of n̄g = 10−3h3Mpc−3 which resembles e.g., a spectroscopic
galaxy sample obtained by Euclid [34]. Using the Limber’s approximation, the angular power spectrum of spectroscopic
galaxies between i-th and j-th bins is given by
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where we assumed that there is no overlap of redshift ranges between different redshift bins, and bg is the bias
parameter for the spectroscopic galaxies.
We now consider the cross-correlation between the GW sources and the spectroscopic galaxies. From Eq. (8), we

can compute the cross-correlation power spectrum as

Cwigj (ℓ) = Csigj (ℓ) + Ctigj (ℓ) (18)
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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where we assumed that there is no overlap of redshift ranges between different redshift bins, and bg is the bias
parameter for the spectroscopic galaxies.
We now consider the cross-correlation between the GW sources and the spectroscopic galaxies. From Eq. (8), we
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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FIG. 2: Projected 68% confidence limit constraints in the Ωm-h (top) and Ωm-wde (bottom) planes. In each panel, the other
model parameters are marginalized over. Solid lines show constraints for ℓmax = 300, whereas dotted lines show constraints for
ℓmax = 100.

from σ(h) = 0.016 to 0.030 for ℓmax = 100, and from σ(h) = 0.007 to 0.013 for ℓmax = 300. This suggests that the
cross-correlation technique is still useful even when the GW rate is significantly smaller than our fiducial value.
We note that the expressions of the angular power spectra in this paper have been derived using the Limber’s

approximation which breaks down at small ℓ [30, 36]. We expect that this approximation is valid for the purpose
of this paper, because the cross-correlation signal mainly comes from large ℓ, ℓ ∼ ℓmax, at which the Limber’s
approximation is expected to be reasonably accurate for our choice of ∆z = 0.1 for the spectroscopic galaxy sample.
Limber’s approximation becomes inaccurate for cross-correlation with large redshift differences, but due to relative
large shot noise such cross-correlation does not contribute to the result very much. Although there is a long tail of
cross-correlation signals toward lower redshifts (Fig. 1), it is essentially the cross-correlation of galaxies and matter
at the same redshift and hence the Limber’s approximation is again accurate. Nevertheless, we caution that the full
calculation without the Limber’s approximation may be required for more accurate predictions of the cross-correlation
signals, which is beyond the scope of this paper.

IV. CONCLUSION

GWs from mergers of compact objects such as BHs serve as a useful cosmological probe because they allow us
to directly measure absolute distance scales. However, in order to constrain the distance-redshift relation from GW
sources we also need redshift information. While the redshift information may be obtained from observations of EM
counterparts, it is unclear whether such EM counterparts can be reliably identified, especially for BH-BH mergers. In
this paper, we propose to use the cross-correlation of GW sources with spectroscopic galaxies as an alternative means
of constraining the distance-redshift relation. We have explicitly included the effect of weak gravitational lensing
on luminosity distance estimates in our formulation. Using the Fisher matrix formalism, we have shown that tight
constraints on the Hubble constant as well as dark energy parameters can be obtained by the cross-correlation of GW



• proposed a new method to constrain H0 and 
other parameters by cross-correlation of 
GW sources and galaxies with known z

    − standard siren cosmology without follow-up

    − applicable at high-z

Cross-correlation: summary
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Origin of binary BHs?

https://www.ligo.caltech.edu

• ~10-30 M⨀ BHs 
by LIGO/VIRGO

• origin unknown
   − Pop-I/II?
   − Pop-III?
   − PBH?
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Models of BH formation
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Fig. 10 The event rates for Pop III (standard), Pop I and II (OLD), and PBBH merger as

a function of z. These rates are derived by differentiating the cumulative event rate in Fig. 5

with respect to ln z. Note here that the detectability may change by the mass distribution

of each model.

globular cluster (GC) M15. This suggests the possibility of the formation of BBHs in the

GC. A BH of mass ∼ 30M⊙ is much larger than the typical mass of the constituent stars,

∼ 1M⊙, so that it will sink down to the center of the GC or star cluster due to dynamical

friction. Then BBHs can be formed in the central high density region of GCs. Since the

escape velocity from GCs is 10 km s−1 or so, the kick velocity in the formation process of

BHs or the kick when BBHs are formed by three-body interaction is high enough for BBHs

to escape from GCs. Rodriguez, Chatterjee, and Rasio [67] performed such a simulation to

show that the event rate is at most ∼ 1/7 of Pop I and II origin BBHs. If we take their result

as it is, the dynamical formation of binaries in GCs gives only a minor contribution of Pop

II origin of BBHs.

From only the chirp mass, total mass and spin angular momentum, it will be difficult to

distinguish the origin of GW150914-like BBHs. This is because the number of parameters

that can be determined by the distribution function of the GW data is much smaller than

that of the unknown model parameters and the distribution functions assumed in each model.

However, the redshift distribution of GW events varies robustly among the models. Namely,

the maximum possible redshift is ∼ 6, 10, and > 30 for Pop I/II, Pop III, and PBBH models,

respectively (see Fig. 10). In Fig. 10, we show the event rates for each model. These event

rates are derived by differentiating the cumulative event rate in Fig. 5 with respect to ln z.

To observe the maximum redshift as a smoking gun to identify the origin of GW150914-like

events, the construction of Pre-DECIGO seems to be the unique possibility.

Pre-DECIGO can observe NS–NS and NS–BH mergers. However no detection of GWs

from the merger of these systems has been done, though many simulations exist. For the

same distance of the source, the SNR for NS–NS and NS–BH (30M⊙) are 0.08 and 0.25

times smaller than for 30M⊙–30M⊙ BBHs. We will here postpone discussing what we can

do using Pre-DECIGO about these sources until the first observations of GWs from these
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• “observed redshift” zobs

Observed redshift and mass
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detectabilities of binary BH mergers in future detectors (Taylor &
Gair 2012; Miyamoto et al. 2017; Li et al. 2018). In this case, the
signal-to-noise ratio ρ of binary BH mergers with masses m1 and
m2 is computed as (Finn 1996)

ρ =
√

5
96π4/3

R⊙

DL(z)

(
Mz

M⊙

)5/6

#
√

I ≡ ρ0#, (15)

R⊙ = cT⊙ = G M⊙

c2
, (16)

Mz = (1 + z)M = (1 + z)
(m1m2)3/5

(m1 + m2)1/5
, (17)

I =
∫ fmax

0
df T

−1/3
⊙ f −7/3{Sn(f )}−1, (18)

where DL(z) is the luminosity distance, Mz is the redshifted chirp
mass, and Sn(f) is the noise power spectrum density of a detector
that has the dimension of Hz−1/2. The angular orientation function #

encapsulates information on the detector with respect to the position
of the binary BH merger on the sky as well as the inclination angle
of the merger event. Assuming the random orientations, the PDF of
# can be well approximated by (Finn 1996)

P (#) = 5#(4 − #)3

256
, (19)

for 0 < # < 4 and P(#) = 0 otherwise. We assume that fmax

corresponds to the frequency at the innermost stable circular orbit
(ISCO) that is given by

fISCO = M⊙

63/2πT⊙(1 + z)M
≈ 4397 Hz

(1 + z)(M/ M⊙)
, (20)

where M = m1 + m2 is the total mass of the binary BH system. For
simplicity, throughout the paper we assume that masses of binary
BHs are always equal e.g. M = 26/5M, to compute fISCO.

4.2 Distribution of binary BH mergers

First we derive the event rate of binary BH mergers for a given
gravitational wave observatory without the effect of gravitational
lensing magnification. Assuming a threshold of the signal-to-noise
ratio of ρ th, the event rate Robs is computed as

Robs =
∫

dz

∫
dM

dV

dz

RGW(z)
1 + z

dp

dM
S(ρth; M, z), (21)

where RGW(z) and dp/dM are the BH merger rate density and the
chirp mass distribution, respectively, presented in Section 4, dV/dz

is the comoving volume element, and a factor 1/(1 + z) takes account
of the cosmological time dilation. The effect of the signal-to-noise
ratio threshold ρ th is included in S(ρth; M, z) as

S(ρth; M, z) = T (4) − T (ρth/ρ0), (22)

T (#) = #2

256
(160 − 80# + 15#2 − #3), (23)

for ρ th/ρ0 < 4 and S(ρth; M, z) = 0 otherwise.
Next we consider the effect of gravitational lensing magnification.

Ignoring the effect of the phase shift (Dai & Venumadhav 2017), we
can include the effect of lensing magnification µ in the geometric
optics limit simply by shifting the luminosity distance as

DL(z) → DL(z)
√

µ
. (24)

Therefore, in presence of the lensing effect, the event rate is com-
puted as

Robs =
∫

dz

∫
dµ

dP

dµ

∫
dM

dV

dz

RGW(z)
1 + z

dp

dM
×Slens(ρth; M, z, µ), (25)

Slens(ρth; M, z, µ) = T (4) − T (ρth/(
√

µρ0)), (26)

for ρth/(
√

µρ0) < 4 and Slens(ρth; M, z, µ) = 0 otherwise, and
dP/dµ is the magnification PDF as a function of redshift derived in
Section 2.

In this paper, we consider how gravitational lensing modifies the
observable distribution of BH mergers. Specifically, we consider
the differential distributions of the ‘observed redshift’ zobs, which
is the redshift inferred from the luminosity distance without the
correction of lensing magnification µ, as well as the ‘observed chirp
mass’ Mobs, which is the chirp mass inferred from the observed
waveform, again without the correction of lensing magnification.
They are simply defined as

DL(zobs) = DL(z)
√

µ
, (27)

Mobs = 1 + z

1 + zobs
M. (28)

By differentiating equation (25) we can obtain differential distribu-
tion of the event rate, dRobs/dzobs and dRobs/dMobs.

4.3 Gravitational wave observatories

In our calculation, information on gravitational wave observatories
is included in the noise power spectrum Sn(f). As specific examples,
we consider Sn(f) from ongoing observatories such as advanced
LIGO (aLIGO)1 for the design specification and KAGRA (Naka-
mura et al. 2016), as well as the so-called third-generation obser-
vatories such as Einstein Telescope (ET, Regimbau et al. 2012)
and Cosmic Explorer (CE, Abbott et al. 2017). We also consider a
planned space mission B-DECIGO (Nakamura et al. 2016) which
is supposed to find binary BH mergers out to high redshifts. The
noise power spectra assumed in this paper are shown in Fig. 6.

5 R ESULTS

5.1 Distributions in various observatories

We first derive differential distributions as a function of observed
redshift zobs (equation 27) as well as observed chirp mass Mobs

(equation 28) for various gravitational wave observatories summa-
rized in Section 4.3. Throughout the paper we adopt the signal-
to-noise threshold of ρ th = 8 to compute expected distributions.
Figs 7–11 show event rate distributions for advanced LIGO, KA-
GRA, Einstein Telescope, Cosmic Explorer, and B-DECIGO, re-
spectively. Here we ignore the measurement errors and show dis-
tributions that would be observed in absence of any measurement
errors. Even without measurement errors, the event rate distribu-
tions are modified due to gravitational lensing magnification that
cannot be corrected for individual event basis.

We find that the differential distributions are modified due to
gravitational lensing magnification, mainly at high zobs and high

1https://www.ligo.caltech.edu

MNRAS 480, 3842–3855 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/480/3/3842/5068183
by University of Tokyo Library user
on 23 August 2018
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BHs are always equal e.g. M = 26/5M, to compute fISCO.

4.2 Distribution of binary BH mergers

First we derive the event rate of binary BH mergers for a given
gravitational wave observatory without the effect of gravitational
lensing magnification. Assuming a threshold of the signal-to-noise
ratio of ρ th, the event rate Robs is computed as
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where RGW(z) and dp/dM are the BH merger rate density and the
chirp mass distribution, respectively, presented in Section 4, dV/dz

is the comoving volume element, and a factor 1/(1 + z) takes account
of the cosmological time dilation. The effect of the signal-to-noise
ratio threshold ρ th is included in S(ρth; M, z) as

S(ρth; M, z) = T (4) − T (ρth/ρ0), (22)
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for ρ th/ρ0 < 4 and S(ρth; M, z) = 0 otherwise.
Next we consider the effect of gravitational lensing magnification.

Ignoring the effect of the phase shift (Dai & Venumadhav 2017), we
can include the effect of lensing magnification µ in the geometric
optics limit simply by shifting the luminosity distance as
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In this paper, we consider how gravitational lensing modifies the
observable distribution of BH mergers. Specifically, we consider
the differential distributions of the ‘observed redshift’ zobs, which
is the redshift inferred from the luminosity distance without the
correction of lensing magnification µ, as well as the ‘observed chirp
mass’ Mobs, which is the chirp mass inferred from the observed
waveform, again without the correction of lensing magnification.
They are simply defined as
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, (27)

Mobs = 1 + z

1 + zobs
M. (28)

By differentiating equation (25) we can obtain differential distribu-
tion of the event rate, dRobs/dzobs and dRobs/dMobs.

4.3 Gravitational wave observatories

In our calculation, information on gravitational wave observatories
is included in the noise power spectrum Sn(f). As specific examples,
we consider Sn(f) from ongoing observatories such as advanced
LIGO (aLIGO)1 for the design specification and KAGRA (Naka-
mura et al. 2016), as well as the so-called third-generation obser-
vatories such as Einstein Telescope (ET, Regimbau et al. 2012)
and Cosmic Explorer (CE, Abbott et al. 2017). We also consider a
planned space mission B-DECIGO (Nakamura et al. 2016) which
is supposed to find binary BH mergers out to high redshifts. The
noise power spectra assumed in this paper are shown in Fig. 6.
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rized in Section 4.3. Throughout the paper we adopt the signal-
to-noise threshold of ρ th = 8 to compute expected distributions.
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• hard to identify multiple images

Strong lensing of BH mergers

treat as distinct events
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• some images are magnified and 
some images are demagnified



New model of magnification PDF
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Result: advanced LIGO
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Result: Cosmic Explorer
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• significant modifications of tails

    apparently high Mobs      magnification
    apparently high zobs      demagnification

• should be accompanied by multiple images

Effect of lensing (de-)magnification



Expected multiple image pairs

advanced LIGO

time

≲1day

   − time delay ≲1day
   − high, similar μ
   − Robs < 1 yr−1
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Expected multiple image pairs

Cosmic Explorer

time

   − time delay   
      ~10-100 days
   − different μ
   − Robs ~ O(103) yr−1

~10-100 day
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• pronounced lensing effects at high Mobs and 
high zobs

discovery of apparently very high-z event 
does not necessarily support PBH

• markedly different properties of multiple 
images for different experiments



• interesting synergies between GW and 
large/small-scale structure of Universe

• a lot of room to explore!

Conclusion
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1. Introduction

Gravitational lensing is the deflection of light rays due to inter-
vening inhomogeneous matter distributions in the Universe. 
The gravitational lensing effect is unambiguously predicted 
by Einstein’s general relativity, and has actually been used to 
test the validity of general relativity as a gravitational theory. 
For instance, the deflection angle at the surface of the Sun is 
predicted to 1.7′′ in general relativity, which was confirmed by 
observations during a solar eclipse in 1919 (see e.g. [1] for a 
historical review).

When the defection angle is sufficiently large, it is pos-
sible that multiple images of a distant source are observed. 
In order for such strong gravitational lensing to be observed, 
a chance alignment of a background source and a foreground 
object that acts as a lens along the line-of-sight is needed. 
While the chance alignment of multiple stars is quite rare 
[2], strong gravitational lensing (strong lensing) is observed 
to be more common among galaxies and clusters of galaxies 
[3, 4]. Galaxies and clusters of galaxies are massive enough 
to split multiple images by more than an arcsecond on the 
sky, which can be resolved by astronomical observations in 
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Abstract
Recent rapid progress in time domain surveys makes it possible to detect various types of 
explosive transients in the Universe in large numbers, some of which will be gravitationally 
lensed into multiple images. Although a large number of strongly lensed distant galaxies and 
quasars have already been discovered, strong lensing of explosive transients opens up new 
applications, including improved measurements of cosmological parameters, powerful probes 
of small scale structure of the Universe, and new observational tests of dark matter scenarios, 
thanks to their rapidly evolving light curves as well as their compact sizes. In particular, 
compact sizes of emitting regions of these transient events indicate that wave optics effects 
play an important role in some cases, which can lead to totally new applications of these 
lensing events. Recently we have witnessed first discoveries of strongly lensed supernovae, 
and strong lensing events of other types of explosive transients such as gamma-ray bursts, 
fast radio bursts, and gravitational waves from compact binary mergers are expected to be 
observed soon. In this review article, we summarize the current state of research on strong 
gravitational lensing of explosive transients and discuss future prospects.
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