観測的宇宙論のこれまでとこれから

大栗真宗

千葉大学 先進科学センター

2024/12/25 理論懇シンポジウム@国立天文台

宇宙論の標準理論

- A入り冷たいダークマターモデル (ACDM)
 - -冷たい(宇宙初期から非相対論的)ダークマター
 - 宇宙項的なダークエネルギー
 - 断熱ゆらぎ
 - ほぼスケール不変原始パワースペクトル
 - 平坦な宇宙

(余談) 私が研究を始めた頃

 3つの宇宙論モデルで計算を行う のが「作法」だった

- Λ CDM Ω_m =0.3 Ω_{Λ} =0.7

-SCDM $\Omega_m = 1.0$ $\Omega_{\Lambda} = 0.0$

- **OCDM** $\Omega_{\rm m}$ =0.45 Ω_{Λ} =0.0

 宇宙背景放射ゆらぎの観測等に よってACDMが確立したため この作法はその後数年で消滅した

標準宇宙論の成功

6つのパラメータを調整することで観測を精密に再現

4

観測的宇宙論の現在の方向性 (の一つ)

• 標準宇宙論のストレステスト

宇宙背景放射ゆらぎ → 密度ゆらぎ初期条件

Big Bang

Universe Age

宇宙背景放射からの「外挿」 (標準宇宙論を仮定した進化)

無矛盾?

宇宙の膨張、 ゆらぎの直接観測

Reionization

Black Holes and Accretion disks 250 million years years **50 to the second secon**

First Stars < 180 million years Cosmic Dark Ages

380,000-years

I.R.FULLER, NATIONAL SCIENCE FOUNDATION

見えてきた (?) 標準宇宙論の綻び

- H₀問題
- S₈問題
- DESI BAO問題

H₀(ハッブル定数)問題

距離はしご セファイド星, la型超新星 などさまざまな距離指標を 組み合わせる

宇宙背景放射 観測される温度ゆらぎの 非等方性のパターンから 宇宙論モデルを仮定し算出

80

75 I

70

65

2000

[km/s/Mpc]

 H_0

ブル定数

シ

<

(時間)

• 例:早期ダークエネルギー

e.g., Kamionkowski & Riess ARNPS 73(2023)153

加速膨張で音速の地平線を減少

$$r_* = \int_0^{t_*} \frac{c_s}{a} dt$$

宇宙背景放射から推定される ハッブル定数は増加

 $H_0 \propto \theta_*/r_*$

距離はしご測定の系統誤差?

Distribution of H_0 Values for 3 JWST Methods

Freedman+ arXiv:2408.06153

ダスト減光の不定性

Hoの独立な測定

これからますます重要に

• • •

規格化された質量密度 (ダークマター+バリオン)

●宇宙背景放射から推定されるS₂と弱い重力レンズで測定される

弱い重カレンズ 銀河形状のゆがみを用いた 質量密度ゆらぎの直接測定

宇宙背景放射 赤方偏移 z=1090 のゆらぎを 標準宇宙論を仮定して z=0に 外挿する $\sigma_8(\Omega_m/0.3)^{0.5}$

S₈

S₈測定の歴史

弱い重カレンズの系統誤差?

Li+ (incl. <u>MO</u>) Phys. Rev. D**108**(2023)123518 測光的赤方偏移が無バイ 0.050.00 アスの場合の期待される -0.05 Δz_4 自己較正の結果 -0.10-0.15観測データから自己較正 -0.20で得た測光的赤方偏移 -0.25 ______ -0.10-0.050.00 Δz_3 BLUE 赤い銀河 (固有整列大) か 0.84 $\sigma_8(\Omega_{\rm m}/0.3)^{1/2}$ 青い銀河 (固有整列小) や 使う固有整列のモデルで Ⅲ 0.72 ┘ S_{∞} 異なる宇宙論パラメータ TATT NLA 0.66 -----Planck CMB Planck CMB no IA 0.40 0.32 0.40 0.240.16 $\Omega_{\rm m}$

no A

0.24

0.16

0.32

 $\Omega_{\rm m}$

McCullough+ arXiv:2410.22272

S®問題とHの問題は相性があまり良くない問題

Hill+ Phys. Rev. D **I 02**(2020)043507

弱い重力レンズで測定するスケール

15

https://www.desi.lbl.gov/category/announcements/

見えてきた (?)標準宇宙論の綻び:まとめ

- する観測がいくつかある
- 系統誤差の正しい評価が重要

● H₀問題, S₀問題, DESI BAO問題, など標準宇宙論の綻びを示唆

Accuracy versus precision

high precision high accuracy

high precision low accuracy

Accuracy versus precision

見えてきた (?) 標準宇宙論の綻び: まとめ

- する観測がいくつかある
- 系統誤差の正しい評価が重要
- - ますます重要になってきている
- 異なるアプローチの相互比較も重要

● H₀問題, S₀問題, DESI BAO問題, など標準宇宙論の綻びを示唆

天体物理、銀河形成進化、星間物質、etc の理解が宇宙論でも

観測的宇宙論の他の方向性

Chabanier+ MNRAS **489**(2019)2247

 小スケール宇宙論 ダークマターの性質

原始密度ゆらぎ

小スケールダークマター分布

小スケールダークマター分布の測定 10• 天の川銀河矮小銀河,潮汐ストリーム 10^{4} 強い重カレンズ像フラックス比 10^{3} $dN/d\log_{10}M$ 八口一質量で107-8M₀ 10^{2} まで標準的なCDMと 10^{1} 無矛盾 10^{0} 10^{6} 10^{7} 7.0 8.5 4.0 5.5 10.0 $\log_{10} M_{\rm hm}/M_{\odot}$

Keeley+ MNRAS **535**(2024)1652

Banik+ MNRAS 502(2021)2364

小スケールダークマター分布の測定

- 天の川銀河矮小銀河、潮汐ストリーム
- 強い重カレンズ像フラックス比
- もっと小スケールまで行きたい!
- 連星合体重力波

連星合体重力波

波動光学重カレンズ

波の重ね合わせ

到達時間 Δt

e.g., <u>MO</u> RPP **82**(2019)126901, for a review

波動光学重カレンズ

e.g., <u>MO</u> RPP **82**(2019)126901, for a review

波動光学重カレンズの例

周波数を固定してソース位置が 移動した時の増光率

連星合体重力波の周波数の時間進化を利用して検出可能

ソース位置を固定して周波数 が変化した時の増光率

波動光学効果は観測されるか?

10¹⁵

10¹² 重力波の場合に 10⁹ 波動光学効果が 100 Z_I)M [M ₀] 10³ 観測される範囲 100 10^{-3} 10^{-6} 1 ダークマター 10^{-9} ズ質量 小質量ハロー 10⁻¹² **10**⁻¹⁵ (M~I0^{0−4}M_☉)

<u>MO</u> RPP **82**(2019)126901 (with modification)

波動光学効果の計算

Takahashi+ A&A 438(2005)L5 Takahashi ApJ **644**(2006)80 <u>MO</u> & Takahashi ApJ **901** (2020) 58 Choi+ Phys. Rev. DI04(2021)063001 Mizuno & Suyama Phys. Rev. D108(2023)043511 Yarimoto & <u>MO</u> arXiv:2412.07272

$$\varphi(\mathbf{r}) = \varphi_0(\mathbf{r}) - \frac{\mu}{2\pi\hbar^2} \int d\mathbf{r}' \frac{e^{i\mathbf{k}\cdot(\mathbf{r}-\mathbf{r}')}}{|\mathbf{r}-\mathbf{r}'|} V(\mathbf{r}')\varphi(\mathbf{r}')$$
Born近似

小スケールダークマターによる波動光学効果

Takahashi ApJ **644**(2006)80 <u>MO</u> & Takahashi ApJ 901 (2020) 58

検出可能

<u>MO</u> & Takahashi Phys. Rev. D 106(2022)043532

• 重力波の振幅ゆらぎと位相ゆらぎの周波数進化から検出可 ただし普通の重力波源に対しては信号は非常に小さい

銀河や銀河団の重力レンズで増光された像に対しては十分

ダークマター小質量ハロー (波動光学重カレンズ)

銀河,銀河団 (幾何光学重カレンズ)

波動光学効果による重力波波形のゆらぎ

 増幅因子の一般的な解析的表式を導出 $F^{j}(f,\boldsymbol{q}_{\beta}) \simeq |\mu_{0}(\boldsymbol{q}_{j})|^{1/2} e^{2\pi i f \Delta t(\boldsymbol{q}_{j}+\boldsymbol{r}_{j},\boldsymbol{q}_{\beta})} e^{-i\pi n_{j} \operatorname{sgn}(f)}$

$$\tilde{G}_j(\boldsymbol{k}, f) = \frac{i}{r_{\rm F}^2 k^2/2} \left[\exp\left(-i\right) \right]$$

増幅因子の幾何光学 × $1 + \int \frac{d\mathbf{k}}{(2\pi)^2} \tilde{\kappa}_j(\mathbf{k}) \tilde{G}_j(\mathbf{k}, f)$ 極限の表式 ~小スケール 摂動的な波動光学効果 $i\frac{\mu_{j,1}r_{\rm F}^2}{2}k_1^2 - i\frac{\mu_{j,2}r_{\rm F}^2}{2}k_2^2\Big) - 1\Big]$ ダークマター分布 幾何光学重力レンズ増光率 $\mu_0 = \mu_{i,1}\mu_{i,2}$

MO & Takahashi Phys. Rev. D106(2022)043532

期待される波動光学効果の信号

MO & Takahashi Phys. Rev. D106(2022)043532

幾何光学重力レンズ増光で波動光学効果の信号も大幅に増幅

まとめ

- 観測的宇宙論の進展によって標準宇宙論が確立したが
- - 可能性が浮上し,盛んに研究されている
- ダークマターの解明に向けて小スケール宇宙論も大きく
 - 進展している
- 問題もまだまだたくさんある

観測の精密化にともなって新しい謎が出てきている 大スケール観測でHo問題, So問題など標準宇宙論の綻びの

• 観測的宇宙論は成熟しつつあるが、一方で未開拓の面白い

