観測的宇宙論のこれまでとこれから

大栗 真宗

千葉大学 先進科学センター

2024/12/25 理論懇シンポジウム@国立天文台

宇宙論の標準理論

- ^Λ入り冷たいダークマターモデル (**ΛCDM**)
	- − 冷たい (宇宙初期から非相対論的) ダークマター
	- − 宇宙項的なダークエネルギー
	- − 断熱ゆらぎ
	- − ほぼスケール不変原始パワースペクトル
	- − 平坦な宇宙

(余談) 私が研究を始めた頃 – 17 –

● 3つの宇宙論モデルで計算を行う のが「作法」だった

− **ΛCDM** Ωm=0.3 ΩΛ=0.7

 $-$ SCDM $\Omega_m=1.0$ $\Omega_\Lambda=0.0$

 $-$ **OCDM** $\Omega_m = 0.45$ $\Omega_\Lambda = 0.0$

• 宇宙背景放射ゆらぎの観測等に よってΛCDMが確立したため この作法はその後数年で消滅した

標準宇宙論の成功

6つのパラメータを調整することで観測を精密に再現

観測的宇宙論の現在の方向性 (の一つ)

N.R.FULLER, NATIONAL SCIENCE FOUNDATION \Box **FOUNDATION**

• 標準宇宙論のストレステスト

宇宙背景放射ゆらぎ → 密度ゆらぎ初期条件

Big Bang

Universe Age

|宇宙背景放射からの「外挿」 **(**標準宇宙論を仮定した進化**)**

《無矛盾?

宇宙の膨張、 ゆらぎの直接観測

時間

Black Holes and Accretion disks

Pears

Pears

The DDD Street

First Stars < 180 million years **Cosmic Dark Ages**

380,000-years

見えてきた (?) 標準宇宙論の綻び

- H0問題
- S8問題
- DESI BAO問題

H0 (ハッブル定数) 問題

距離はしご セファイド星, Ia型超新星 などさまざまな距離指標を 組み合わせる

宇宙背景放射 観測される温度ゆらぎの 非等方性のパターンから 宇宙論モデルを仮定し算出

80 $[km/s/Mpc]$ 75 H_0 ブルボ数 70 シ \leq 65 2000

(時間)

• ^例: 早期ダークエネルギー

宇宙背景放射から推定される ハッブル定数は増加

 $H_0 \propto \theta_* / r_*$

e.g., Kamionkowski & Riess ARNPS **73**(2023)153

加速膨張で音速の地平線を減少

$$
r_* = \int_0^{t_*} \frac{c_s}{a} dt
$$

距離はしご測定の系統誤差?

Distribution of H_0 Values for 3 JWST Methods

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ • ダスト減光の不定性

Freedman+ arXiv:2408.06153

H0の独立な測定

これからますます重要に

…

11

規格化された質量密度 **(**ダークマター**+**バリオン**)**

• 宇宙背景放射から推定されるS8と弱い重力レンズで測定される

弱い重力レンズ 銀河形状のゆがみを用いた 質量密度ゆらぎの直接測定

宇宙背景放射 赤方偏移 z=1090 のゆらぎを 標準宇宙論を仮定してz=0 に 外挿する

 $\sigma_8(\Omega_{\rm m}/0.3)^{0.5}$

 II

 S_8

弱い重力レンズの系統誤差?

 $\Omega_{\rm m}$ McCullough+ arXiv:2410.22272

Li+ (incl. MO) Phys. Rev. D**108**(2023)123518 測光的赤方偏移が無バイ 0.05 0.00 アスの場合の期待される -0.05 自己較正の結果 Δz_4 \bullet -0.10 -0.15 観測データから自己較正 -0.20 で得た測光的赤方偏移 -0.25 ¹ -0.10 -0.15 -0.05 0.00 Δz_{3} **BLUE** 赤い銀河 (固有整列大) か 0.84 $\sigma_8(\Omega_{\rm m}/0.3)^{1/2}$ 青い銀河 (固有整列小)や 使う固有整列のモデルで III 0.72 S_{∞}^{∞} 異なる宇宙論パラメータ**TATT NLA** $0.66[°]$ no IA Planck CMB 0.40 0.40 0.24 0.32 0.16 $\Omega_{\rm m}$

S8問題とH0問題は相性があまり良くない問題

Hill+ Phys. Rev. D **102**(2020)043507 **15**

弱い重力レンズで測定するスケール

見えてきた (?) 標準宇宙論の綻び: まとめ

- する観測がいくつかある
- 系統誤差の正しい評価が重要

• H0問題, S8問題, DESI BAO問題, など標準宇宙論の綻びを示唆

Accuracy versus precision

high precision high accuracy

high precision low accuracy

Accuracy versus precision

見えてきた (?) 標準宇宙論の綻び: まとめ

• H0問題, S8問題, DESI BAO問題, など標準宇宙論の綻びを示唆

• 天体物理, 銀河形成進化, 星間物質, etc の理解が宇宙論でも

- する観測がいくつかある
- 系統誤差の正しい評価が重要
- - ますます重要になってきている
- 異なるアプローチの相互比較も重要

Chabanier+ MNRAS **489**(2019)2247

● 小スケール宇宙論 ダークマターの性質

原始密度ゆらぎ

観測的宇宙論の他の方向性

小スケールダークマター分布

小スケールダークマター分布の測定 10 • 天の川銀河矮小銀河, 潮汐ストリーム ● 強い重力レンズ像フラックス比 $10³$ $dN/d\log_{10}M$ ハロー質量で10^{7−8}M⊙ 10^2 まで標準的なCDMと $10¹$ 無矛盾 10^{0} 10^6 $10⁷$ 7.0 8.5 4.0 5.5 10.0 $\log_{10} M_{\rm hm}/M_\odot$

Keeley+ MNRAS **535**(2024)1652 Banik+ MNRAS **502**(2021)2364

小スケールダークマター分布の測定

- 天の川銀河矮小銀河, 潮汐ストリーム
- 強い重力レンズ像フラックス比
- もっと小スケールまで行きたい!
- 焦線通過 (→河合氏講演 **10:00-**)
- **連星合体重力波**

連星合体重力波

到達時間 **Δt**

波動光学重力レンズ

波の重ね合わせ

e.g., MO RPP **82**(2019)126901, for a review

波動光学重力レンズ

e.g., MO RPP **82**(2019)126901, for a review

波動光学重力レンズの例

周波数を固定してソース位置が 移動した時の増光率

ソース位置を固定して周波数 が変化した時の増光率

連星合体重力波の周波数の時間進化を利用して検出可能

波動光学効果は観測されるか?

 10^{15}

 10^{12} 重力波の場合に $10⁹$ 波動光学効果が 106 Z_1) M $[M_{\odot}]$ $10³$ 観測される範囲 $10⁰$ 10^{-3} 10^{-6} $\overline{\Box}$ ダークマター 10^{-9} レンズ質量 小質量ハロー 10^{-12} 10^{-15} (M~100−4M⊙) 10^{-18}

MO RPP **82**(2019)126901 (with modification)

波動光学効果の計算

→ ボルン近似を用いた計算が便利

 $\varphi(r) = \varphi_0(r) - \frac{\mu}{2\pi i}$ $\int \frac{dr'}{2\pi\hbar^2}$ dr' *eik*⋅(*r*−*r*′) |*r* − *r*′| *V*(*r*′)*φ*(*r*′) $\varphi_0(r)$ **Born**近似

Takahashi+ A&A **438**(2005)L5 Takahashi ApJ **644**(2006)80 MO & Takahashi ApJ **901**(2020)58 Choi+ Phys. Rev. D**104**(2021)063001 Mizuno & Suyama Phys. Rev. D**108**(2023)043511 Yarimoto & MO arXiv:2412.07272

HSC-BOSS GALAXY-GALAXY LENSING AND CLUSTERING

小スケールダークマターによる波動光学効果

-
-

• 重力波の振幅ゆらぎと位相ゆらぎの周波数進化から検出可 • ただし普通の重力波源に対しては信号は非常に小さい

• 銀河や銀河団の重力レンズで増光された像に対しては十分

銀河**,** 銀河団 **(**幾何光学重力レンズ**)**

重力波 ダークマター小質量ハロー **(**波動光学重力レンズ**)**

検出可能 MO & Takahashi Phys. Rev. D**106**(2022)043532

Takahashi ApJ **644**(2006)80 MO & Takahashi ApJ **901**(2020)58

分 *|µ*0(*ql*)*| |µ*0(*qm*)*|* \mathbf{y} Fresnel scale, convergence power spectra *P*(*k*) can be

*r*2 ^F*k*²*/*2 F 7桁的表式を $\ddot{}$ $\frac{1}{\sqrt{2}}$ *^j* (*k, f*)

 $\cdot i$ $\frac{1}{2}$ $(a_i + a_j)$ \boldsymbol{q} $-i\pi n$ $1/2$ _{*e*} $2\pi i f \Delta t(\boldsymbol{q}_j + \boldsymbol{r}_j, \boldsymbol{q}_\beta)$ ^{*e* $- i \pi n_j sgn(f)$}

(2⇡)² $(11/2$ y/よ胖们T的衣式で写出

 1/2.2:(Al(s) $\begin{array}{lll} \mathcal{M} & \math$ $F^{j}(f, q_{\beta}) \simeq |\mu_{0}(q_{j})|^{1/2}$ $\frac{1}{2}$ *|µ*(*q^j* + *r^j*)*|* $\sim |\mu_0(\bm{q}_j)|^{1/2} e^{2\pi i f \Delta t (\bm{q}_j + \bm{r}_j)},$ ⇥ 1 + ^Z *^d^k* りな解析的表式を導出 ⇥ $(1 H J 1 X.$ = *|µ*0(*q^j*)*|* ¹*/*²*e*²⇡*ift*(*qj*+*r^j ,q*) ⇥ 1子の一般的な解析 (2⇡)² \sum *^j* (*k, f*) • 増幅因子の一般的な解析的表式を導出 = *|µ*0(*q^j*)*|* ¹*/*²*e*²⇡*ift*(*qj*+*r^j ,q*)

$$
\tilde{G}_j(\mathbf{k}, f) = \frac{i}{r_{\rm F}^2 k^2 / 2} \left[\exp\left(-i \frac{\mu_{j,1} r_{\rm F}^2}{2} k_1^2 - i \frac{\mu_{j,2} r_{\rm F}^2}{2} k_1^2 \right) \right]
$$

MO & Takahashi Phys. Rev. D **106**(2022)043532 ⌘*lm*(*f*) = *|µ*(*q^j* + *r^j*)*|* hi Phys. Rev. D **106**(2022)043532

波動光学効果による重力波波形のゆらぎ + *|µj,*1*µj,*2*|* ¹*/*²*ei*⇡*n^j* sgn(*f*) *e*²⇡*ift*0(*q^j ,q*) f'' of multiple images. In this case, by comparing wave-*Fj* f , \overline{H} \overline{H} *Fj* G0(*f, q*) $\mathsf{E}% _{0}$ *|µ*(*q^j* + *r^j*)*|* 1*/*2 *|µ*0(*q^j*)*|* 次波形 2.00057 (動光学効果によ *|µ*(*q^j* + *r^j*)*|* ¹*/*² *^F^j* ^G(*f, q*) ⇥ $\overline{1}$ \boldsymbol{V} \overline{ABE} (2⇡)² ˜ $\frac{170}{17}$ *^F^j* (*f, ^q*) ' *[|]µ*0(*q^j*)*[|]* 1*/*2 *^F^j* (*f, ^q*) ' *[|]µ*0(*q^j*)*[|]* 1*/*2 By using this expression, we finally obtain ¹*/*² *^F^j* sh in \preceq in dex [24, 27, 28], and represents perturbative wave op-

 $\mathbb{R}^d \left| \partial_t \mathcal{H} \right| \leq \mathcal{H} \left| \mathcal{H} \right| \leq \mathcal$ 1 + ^Z *^d^k* $\tilde{\gamma}$ (*k*)^d ˜ ■ 福田子の幾 \mathbf{R} $\mu_{j,1} r_\mathrm{F}^2$ 2 k_1^2 $\frac{2}{1} - i$ $\mu_{j,2} r_\mathrm{F}^2$ 2 k_2^2 2 ◆ -1 $\overline{}$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ cation factors, we also obtain $\int \frac{1}{(2\pi)^2} \kappa_j(\mathbf{k})$ $\bigg)$ $j(\boldsymbol{k},f)$ $\times \left[1 + \int \frac{d\mathbf{k}}{(2\pi)^2} \tilde{\kappa}_j(\mathbf{k}) \tilde{G}_j(\mathbf{k},f)\right]$ **1支里川廿」「よ 次里川丁」「子 ※川ラ**
インタントリー $-i\frac{\mu_{j,1} r_{\rm F}^2}{2} k_1^2 \begin{pmatrix} 0 & 2 & \cdots & 2 \\ 0 & 0 & 2 & \cdots & 2 \\ 0 & 0 & 0 & 2 & \cdots & 2 \\ 0 & 0 & 0 & 0 & 2 & \cdots & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & \cdots & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & \cdots & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 &$ $\overline{}$ *^j* (*k, f*) *Klm*(*f*) and phase fluctuations *Slm*(*f*) as between these multiple images is much larger than the $\frac{d\mathbf{k}}{d\mathbf{k}}$ $\frac{d\mathbf{k}}{d\mathbf{k}}$ $\left| \tilde{G}_j(\boldsymbol{k},f) \right|$ **The Contract of the Contract of the Contract of Term** ן 1||1
יישוב 』
日の表式 *.* (23) This is a general expression of the complex amplification $\tilde{\rho}$ and $i \left[\left(\mu_{i,1} r_{\mathrm{F12}}^2 - \mu_{i,2} r_{\mathrm{F12}}^2 \right) \right]$ $f(\boldsymbol{\kappa},J) = \frac{1}{r_F^2 k^2/2} \begin{bmatrix} \exp\left(-i\frac{\pi}{2} - \kappa_1 - i\frac{\pi}{2} - \kappa_2\right) \end{bmatrix}$ $\frac{f(x, t - 1)}{x - 1}$ (幾14元子里リレンス増元举 $M0 - M_{j,1}M_{j,2}$ **frank#JJUJWA**
- ダークマター分布 $\frac{\mu_{j,1} r_{\rm F}^2}{k_1^2-i} \mu_{j,2} r_{\rm F}^2}{k_2^2} -1$ $\begin{array}{cccc} 2 & -1 & -2 & -1 \end{array}$ 後何光学重カレンズ増光率 $\mu_0 = \mu_{j,1} \mu_{j,2}$ where $\frac{1}{2}$ essentially corresponds to a special situation of $\frac{1}{2}$ $-\tilde{\kappa}_j(\boldsymbol{k})\tilde{G}_j(\boldsymbol{k})$ $\left\{\mathbf{x}_j(\mathbf{k},f) \right\}$ ˜ **/限の表** U. *.* 小ス $i \left(\begin{array}{cc} \mu_{i} & r_{\text{B}}^{2} & \mu_{i} & r_{\text{B}}^{2} \end{array} \right)$ $f(\mathbf{k},t) = \frac{1}{r^2 k^2/2} \left[\exp\left(-i\frac{\mathbf{k}^2}{2} - i\frac{\mathbf{k}^2}{2} - i\frac{\mathbf{k}^2}{2} - i\frac{\mathbf{k}^2}{2}\right) - 1 \right]$ \mathbf{F}_{max} , we note that the this expression can be applied that the applied can be applied to the applied to the applied to the set of \mathbf{F}_{max} but also single image systems. We also single image systems. We also note that previous control to the previou
The previous control to the previous control to the previous control to the previous control to the previous c Since small-scale perturbations on *l*-th and *m*-th multiple t independent as long as long as t $\begin{array}{ccc} \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$ $\sum_{i=1}^{\infty}$ $\frac{1}{(2\pi)^2}\,\tilde{\kappa}_j(\boldsymbol{k})G$ $\begin{equation*} \widetilde{\rightarrow} \ \mathcal{I} \end{equation*}$ j (\boldsymbol{k},f) $\overline{}$ \mathbf{C} Fresnel scale. We note that this expression can be applied but also single image systems. We also single image systems. We also note that previously considered that prev
The previously considered in the previously considered that previously considered in the previously considered
 因子の幾何光子 極限の表式 \sim in $7\,$ km s ill. between these multiple images is much larger than the Fresnel scale, convergence power spectra *P*(*k*) can be -1 摂動的な波動光学効果 増幅因子の幾何光学 小スケール ダークマター分布

期待される波動光学効果の信号

幾何光学重力レンズ増光で波動光学効果の信号も大幅に増幅

MO & Takahashi Phys. Rev. D**106**(2022)043532

まとめ

- 観測的宇宙論の進展によって標準宇宙論が確立したが
- - 可能性が浮上し、盛んに研究されている
	- - 進展している
- 問題もまだまだたくさんある

観測の精密化にともなって新しい謎が出てきている • 大スケール観測でH0問題, S8問題など標準宇宙論の綻びの • ダークマターの解明に向けて小スケール宇宙論も大きく

• 観測的宇宙論は成熟しつつあるが**,** 一方で未開拓の面白い