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宇宙論の標準理論

• Λ入り冷たいダークマターモデル (ΛCDM)

   − 冷たい (宇宙初期から非相対論的) ダークマター
   − 宇宙項的なダークエネルギー
   − 断熱ゆらぎ
   − ほぼスケール不変原始パワースペクトル
   − 平坦な宇宙
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ダークエネルギー



(余談) 私が研究を始めた頃
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Fig. 2.— Redshift distribution of the numbers of halos per steradian (top panels), tangential
arcs (middle panels), and radial arcs (bottom panels). The numbers of tangential and radial

arcs in the middle and bottom panels are divided by the number of halos plotted in the top
panels. We adopt ω = 1.5, cnorm = 8, and zS < 1, and plot those numbers between zL−∆zL/2
and zL + ∆zL/2 with ∆zL = 0.05. Open triangles, open squares, and filled circles indicate

the results for LCDM, SCDM, and OCDM. The left and right panels correspond to the
X-ray flux-limited (Slim = 10−13erg/s/cm2) and the mass-limited (Mmin = 5 × 1014h−1M")

samples.

MO, Taruya & Suto ApJ 559(2001)572

• ３つの宇宙論モデルで計算を行う
のが「作法」だった

        − ΛCDM  Ωm=0.3   ΩΛ=0.7
        − SCDM   Ωm=1.0   ΩΛ=0.0
        − OCDM  Ωm=0.45  ΩΛ=0.0

• 宇宙背景放射ゆらぎの観測等に
よって ΛCDM が確立したため      

この作法はその後数年で消滅した



標準宇宙論の成功
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Chabanier+ MNRAS 489(2019)2247 Planck collaboration A&A 641(2020)A6

宇宙背景放射ゆらぎ 物質密度パワースペクトル
6つのパラメータを調整することで観測を精密に再現



観測的宇宙論の現在の方向性 (の一つ)
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• 標準宇宙論のストレステスト
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時間

私たち
からの

距離

宇宙背景放射ゆらぎ
→ 密度ゆらぎ初期条件

宇宙背景放射からの「外挿」
(標準宇宙論を仮定した進化)

宇宙の膨張、
ゆらぎの直接観測

無矛盾？



見えてきた (？) 標準宇宙論の綻び
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• H0問題
• S8問題
• DESI BAO問題



H0 (ハッブル定数) 問題
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>5σ！

MO 日本物理学会誌 78(2023)630

距離はしご
セファイド星, Ia型超新星
などさまざまな距離指標を
組み合わせる

宇宙背景放射
観測される温度ゆらぎの
非等方性のパターンから
宇宙論モデルを仮定し算出

(←SH0ES)
(←Planck)



標準宇宙論を超えた物理？
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エネルギー
密度

スケール因子 𝑎 
(時間)

宇宙背景放射
(𝑎 ~10−3)

物質∝𝑎−3

放射∝𝑎−4

宇宙項∝𝑎0

早期ダーク
エネルギー

• 例: 早期ダークエネルギー
e.g., Kamionkowski & Riess ARNPS 73(2023)153

加速膨張で音速の地平線を減少

r* = ∫
t*

0

cs

a
dt

宇宙背景放射から推定される
ハッブル定数は増加

H0 ∝ θ*/r*



距離はしご測定の系統誤差？
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• 距離指標の違い 

Freedman+ arXiv:2408.06153

10 Mörtsell et al.
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Figure 8. Fitted H0 as a function of the cut in (V− I) for a
fixed value of RE = 0.386 when calibrating using estimated
color excesses.

With the limited information at hand regarding dust
extinction for Cepheids at NIR wavelengths, the color
calibration of Cepheid magnitudes could potentially in-
troduce large uncertainties in the local distance ladder.

Allowing for a global RW or individually fitted values
of RE in the anchor(s) and the SNIa hosts does not sig-
nificantly change the inferred value of H0, although the
H0 as derived from the individual anchors will shift. In
the case of individually fitted values of RE, the inferred
values range from H0 = 68.1 ± 3.5 for the NGC 4258
anchor to H0 = 76.7 ± 2.0 for the Milky Way. Neither
approach employed in this paper is in one-to-one corre-
spondence with an underlying physical model and there
is no clear evidence in the data for any of them.

We thank the anonymous referee for the insightful and
thorough reviews of the manuscript, in particular for
pointing out the importance of a proper treatment of
color errors having substantial impact on the results
when fitting for the values of RW and RE and the corre-
sponding inferred values of H0. EM acknowledges sup-
port from the Swedish Research Council under Dnr VR
2020-03384. AG acknowledges support from the Swedish
Research Council under Dnr VR 2020-03444, and the
Swedish National Space Board, grant 110-18.
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APPENDIX
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Figure 9. The result of fitting individual galactic values for RE using the color excess Cepheid calibration, imposing flat prior
constraints RE = [0.15, 0.8] (left panel) and Gaussian prior constraints RE = 0.48 ± 0.1 (right panel). Anchor galaxies are
denoted in brown and SNIa host galaxies in petrol. The dotted line corresponds to RE = 0.386.

A. SYSTEM OF EQUATIONS

Following Riess et al. (2016), we collect all data points and their corresponding uncertainties and possible correlations
in the matrices Y and C. This includes the Wesenheit magnitudes of all Cepheids, mW

H,i,j, including the anchors. The

exception is the MW Cepheids for which we use mπ,j → mW
H,j − 10 + 5

ln 10 lnπ. Next, we have the measured anchor
distances, µN4258, µLMC and possibly µM31. Finally, data points include the B-band SNIa magnitudes in the Cepheid

• ダスト減光の不定性

Mörtsell+ ApJ 933(2022)212

SH
0ES

Planck

(色に基づくセファイド星
サンプルのカット)



H0の独立な測定
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• 重力レンズ時間の遅れ
• 標準音源重力波
• メーザー
• …

これからますます重要に
Kelly, Rodney, Treu, MO+ Science 380(2023)abh1322

超新星重力レンズRefsdalによるH0測定



S8問題
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• S8 = 弱い重力レンズで測定されるゆらぎの総量

S8 ≡ σ8 ( Ωm

0.3 )
0.5

質量密度ゆらぎ
パワースペクトルの振幅

規格化された質量密度
(ダークマター+バリオン)

•宇宙背景放射から推定されるS8と弱い重力レンズで測定される
S8とのずれ



S8測定の歴史
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弱い重力レンズ
銀河形状のゆがみを用いた
質量密度ゆらぎの直接測定

宇宙背景放射
赤方偏移 z=1090 のゆらぎを
標準宇宙論を仮定して z=0 に
外挿する



宇宙背景放射
赤方偏移 z=1090 のゆらぎを
標準宇宙論を仮定して z=0 に
外挿する

S8測定の歴史

13

弱い重力レンズ
銀河形状のゆがみを用いた
質量密度ゆらぎの直接測定

~2σ
 (?)



弱い重力レンズの系統誤差？
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• PSF補正
• 測光的赤方偏移
• 固有整列
• …

McCullough+ arXiv:2410.22272

Li+ (incl. MO) Phys. Rev. D108(2023)123518

観測データから自己較正
で得た測光的赤方偏移

測光的赤方偏移が無バイ
アスの場合の期待される
自己較正の結果

赤い銀河 (固有整列大) か
青い銀河 (固有整列小) や
使う固有整列のモデルで
異なる宇宙論パラメータ



S8問題とH0問題は相性があまり良くない問題

15Hill+ Phys. Rev. D102(2020)043507

弱い重力レンズで測定するスケール

• 早期ダークエネルギーによって
宇宙背景放射から予言される
質量密度パワースペクトルが
ΛCDM が場合に比べて増加

S8問題を悪化させる方向

ED
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早
期
ダ
ー
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ネ
ル
ギ
ー



DASI BAO問題
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DESI collaboration arXiv:2404.03002 https://www.desi.lbl.gov/category/announcements/

• 時間変化するダークエネルギーの状態方程式？ (~2-3σ)

w(a) = w0 + wa(1 − a)



見えてきた (？) 標準宇宙論の綻び: まとめ
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• H0問題, S8問題, DESI BAO問題, など標準宇宙論の綻びを示唆
する観測がいくつかある

• 系統誤差の正しい評価が重要



Accuracy versus precision
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Accuracy versus precision
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precision

low precision
high accuracy

low precision
low accuracy

high precision
high accuracy

high precision
low accuracy

 これを目指したい

論文に書かれた「誤差」 が
小さいからといってaccurate
とは限らないので注意！

 最近これもよく目にする



見えてきた (？) 標準宇宙論の綻び: まとめ

20

• H0問題, S8問題, DESI BAO問題, など標準宇宙論の綻びを示唆
する観測がいくつかある

• 系統誤差の正しい評価が重要
• 天体物理, 銀河形成進化, 星間物質, etc の理解が宇宙論でも
ますます重要になってきている

• 異なるアプローチの相互比較も重要



観測的宇宙論の他の方向性
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Chabanier+ MNRAS 489(2019)2247 

•小スケール宇宙論
 

？

ダークマターの性質
原始密度ゆらぎ

大スケール 小スケール



小スケールダークマター分布
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数値シミュレーション

S. Colombi/CFHT

小スケールダークマター分布は
ダークマターの性質解明の鍵

12 Mocz et. al.

10
1

10
2

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
1

10
2

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
1

10
2

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Figure 4. Radially averaged (comoving) density profiles for the

dark matter, gas, and stars for 3 haloes in our simulations under

di↵erent cosmologies are shown at z = 6. The thick solid lines are

dark matter density in the baryon full-physics run, and we also

show corresponding thin lines in the dark matter only runs, which

are similar and show that the baryons have not strongly modified

the dark matter potential wells for these low mass haloes in the

early universe. Thick grey lines show where soliton profiles of

various mass/size lie, which are just marginally resolved by our

simulations. The smallest, densest, most massive soliton profile

approximately matches the simulations.

0 50

Figure 5. Anatomy of a cosmic web dark matter filament. Three

upper panels show a density slice through a filament at z = 7.

CDM has subhaloes on all scales. “WDM” shows caustic struc-

tures. And BECDM has large-scale coherent interference patterns

due to converging flow towards the filament, and a coarse-graining

of caustics on the local de Broglie length scale. The forth sub-

panel shows the estimated sizes of BECDM interference patterns

(at z = 7) by taking �dB of the velocity dispersion of “WDM”,

which are in good agreement with the actual BECDM simulation.

Bottom panel shows redshift evolution of the interference pattern

in the BECDM filament (middle snapshot is the same as BECDM

case in panel above, just rotated).

c� 2019 RAS, MNRAS 000, 1–19

WIMP

Light DM

Ultralight DM
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小スケールダークマター分布の測定

23

• 天の川銀河矮小銀河, 潮汐ストリーム

• 強い重力レンズ像フラックス比

Banik+ MNRAS 502(2021)2364Keeley+ MNRAS 535(2024)1652

ハロー質量で107−8M⊙

まで標準的なCDMと
無矛盾



小スケールダークマター分布の測定
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• 天の川銀河矮小銀河, 潮汐ストリーム

• 強い重力レンズ像フラックス比
もっと小スケールまで行きたい！

• 焦線通過 (→河合氏講演 10:00-)

• 連星合体重力波 PERSONAL DATA
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連星合体重力波
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2015年に
初発見！

天体物理学だけではなく宇宙論にとってもたいへん有用



波動光学重力レンズ
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観測者

到達時間 Δt

波動光学

…

ϕ ∝ ∫ 𝒟 [θ(χ)] e2πifΔt

レンズ

経路 𝛉(𝜒) 

波の重ね合わせ

e.g., MO RPP 82(2019)126901, for a review

ソース



波動光学重力レンズ
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ソース
観測者

到達時間 Δt

波動光学

…

波の重ね合わせ

ϕ ∝ ∫ 𝒟 [θ(χ)] e2πifΔt

レンズ

フェルマーの原理幾何光学 ∇(Δt) = 0
f が大きい極限では∆t の停留点のみ寄与

𝛁(Δt) =0 を満たす経路

e.g., MO RPP 82(2019)126901, for a review



波動光学重力レンズの例
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ソース

レンズ

β2

θEin

ソース

レンズ

β1

β2

θEin

β1

周波数を固定してソース位置が
移動した時の増光率

ソース位置を固定して周波数
が変化した時の増光率

w: 規格化された無次元周波数

連星合体重力波の周波数の時間進化を利用して検出可能



波動光学効果は観測されるか？
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重力波の場合に
波動光学効果が
観測される範囲

幾何光学回折・干渉

重力レンズなし (強い回折)

MO RPP 82(2019)126901 (with modification)

周波数

レ
ン
ズ
質
量ダークマター

小質量ハロー
(M~100−4M⊙)



波動光学効果の計算
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• ダークマター小質量ハローの重力レンズ信号は弱い
     → ボルン近似を用いた計算が便利

入射波 𝜑0

散乱波 𝜑

ポテンシャル V

φ(r) = φ0(r) −
μ

2πℏ2 ∫ dr′ 

eik⋅(r−r′ )

|r − r′ |
V(r′ )φ(r′ )

φ0(r)
Born近似

Takahashi+ A&A 438(2005)L5
Takahashi ApJ 644(2006)80
MO & Takahashi ApJ 901(2020)58
Choi+ Phys. Rev. D104(2021)063001
Mizuno & Suyama Phys. Rev. D108(2023)043511
Yarimoto & MO arXiv:2412.07272

OUR TEAM
HSC-BOSS GALAXY-GALAXY LENSING AND CLUSTERING

高橋 (弘前大) 鎗本 (千葉大)



小スケールダークマターによる波動光学効果
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• 重力波の振幅ゆらぎと位相ゆらぎの周波数進化から検出可
• ただし普通の重力波源に対しては信号は非常に小さい

• 銀河や銀河団の重力レンズで増光された像に対しては十分
検出可能

重力波
観測者

銀河, 銀河団
(幾何光学重力レンズ)

ダークマター小質量ハロー (波動光学重力レンズ)

Takahashi ApJ 644(2006)80
MO & Takahashi ApJ 901(2020)58

MO & Takahashi Phys. Rev. D106(2022)043532



波動光学効果による重力波波形のゆらぎ
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MO & Takahashi Phys. Rev. D106(2022)043532

μ0 = μj,1μj,2幾何光学重力レンズ増光率

3

In evaluating Eq. (16), it is useful to consider the
Fourier transform of �0(r)

�
0(r) =

Z
dk

(2⇡)2
�̃
0(k)eik·r. (18)

In the Fourier space, �̃
0(k) and convergence ̃j(k) are

related with each other by

�k
2
�̃
0(k) = 2̃j(k), (19)

where subscript j is added to convergence to make it clear
that it is the small-scale convergence field in the vicinity
of qj , which is defined to have zero mean i.e., hi = 0.
Inserting these expressions, we obtain

e
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(21)
From the explicit expressions of the complex amplifi-

cation factors, we also obtain

F
j
G
(f, q�)

F
j
G0

(f, q�)
=

|µ(qj + rj)|1/2

|µ0(qj)|1/2
e
i�j . (22)

By using this expression, we finally obtain

F
j(f, q�) ' |µ0(qj)|1/2

|µ(qj + rj)|1/2
F

j
G
(f, q�)

⇥

1 +

Z
dk

(2⇡)2
̃j(k)G̃j(k, f)

�

= |µ0(qj)|1/2e2⇡if�t(qj+rj ,q�)

⇥ e
�i⇡njsgn(f)


1 +

Z
dk

(2⇡)2
̃j(k)G̃j(k, f)

�
.

(23)

This is a general expression of the complex amplification
factor in the presence of small-scale perturbations on the
Fresnel scale. We note that this expression can be applied
to not only multiple images for a strongly lensed system
but also single image systems. We also note that previous
work [5, 8, 9] essentially corresponds to a special situation
with µj,1 = µj,2 = 1.

It is worth noting that F
j is not a direct observable,

because an intrinsic, unlensed waveform is usually un-
known. However, waveforms of compact binary mergers

are parameterized by a small number of physical param-
eters of binaries including mass and spin as well as the
configuration of the detector with respect to the direction
of the source, and any deviations from physical templates
may be ascribed to wave optics e↵ects in the propagation
of gravitational waves. Previous work [25, 26] explored
the possibility of using such wave optics signature in in-
dividual binary merger waveforms to probe small-mass
subhalos.

B. Amplitude and phase fluctuations for multiply

imaged gravitational waves

Here we discuss an alternative approach to detect am-
plitude and phase fluctuations by comparing waveforms
of multiple images. In this case, by comparing wave-
form shapes of l-th and m-th multiple images with their
time delay �tlm, which should be determined from the
data, we can measure the ratio of complex magnification
factors that is is independent of an intrinsic waveform.
Specifically, we define the ratio as

Rlm(f) = e
�2⇡if�tlm F

l(f, q�)
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=
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The function ⌘lm(f) describes e↵ects of small-scale per-
turbations, which for instance induces additional phase
shift on top of the phase shift due to the Morse in-
dex [24, 27, 28], and represents perturbative wave op-
tics e↵ects. We further decompose ⌘lm(f) into amplitude
Klm(f) and phase fluctuations Slm(f) as

1 + ⌘lm(f) ' [1 +Klm(f)] eiSlm(f)
. (26)

Since small-scale perturbations on l-th andm-th multiple
images are to a good approximation regarded as statis-
tically independent as long as the transverse separation
between these multiple images is much larger than the
Fresnel scale, convergence power spectra P(k) can be
defined as

h̃l(k)̃m(k0)i = �lm(2⇡)2�D(k + k0)P l
(k), (27)

where �lm denotes the Kronecker delta. Using this rela-
tion, we can compute dispersions of Klm(f) and Slm(f)
as

hK2

lm(f)i = hK2

l (f)i + hK2

m(f)i, (28)
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In evaluating Eq. (16), it is useful to consider the
Fourier transform of �0(r)
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where subscript j is added to convergence to make it clear
that it is the small-scale convergence field in the vicinity
of qj , which is defined to have zero mean i.e., hi = 0.
Inserting these expressions, we obtain
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From the explicit expressions of the complex amplifi-

cation factors, we also obtain
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This is a general expression of the complex amplification
factor in the presence of small-scale perturbations on the
Fresnel scale. We note that this expression can be applied
to not only multiple images for a strongly lensed system
but also single image systems. We also note that previous
work [5, 8, 9] essentially corresponds to a special situation
with µj,1 = µj,2 = 1.

It is worth noting that F
j is not a direct observable,

because an intrinsic, unlensed waveform is usually un-
known. However, waveforms of compact binary mergers

are parameterized by a small number of physical param-
eters of binaries including mass and spin as well as the
configuration of the detector with respect to the direction
of the source, and any deviations from physical templates
may be ascribed to wave optics e↵ects in the propagation
of gravitational waves. Previous work [25, 26] explored
the possibility of using such wave optics signature in in-
dividual binary merger waveforms to probe small-mass
subhalos.

B. Amplitude and phase fluctuations for multiply

imaged gravitational waves

Here we discuss an alternative approach to detect am-
plitude and phase fluctuations by comparing waveforms
of multiple images. In this case, by comparing wave-
form shapes of l-th and m-th multiple images with their
time delay �tlm, which should be determined from the
data, we can measure the ratio of complex magnification
factors that is is independent of an intrinsic waveform.
Specifically, we define the ratio as

Rlm(f) = e
�2⇡if�tlm F

l(f, q�)

Fm(f, q�)

=
|µ0(ql)|1/2

|µ0(qm)|1/2
e
�i⇡(nl�nm)sgn(f) [1 + ⌘lm(f)] ,
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where

⌘lm(f) =
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h
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The function ⌘lm(f) describes e↵ects of small-scale per-
turbations, which for instance induces additional phase
shift on top of the phase shift due to the Morse in-
dex [24, 27, 28], and represents perturbative wave op-
tics e↵ects. We further decompose ⌘lm(f) into amplitude
Klm(f) and phase fluctuations Slm(f) as

1 + ⌘lm(f) ' [1 +Klm(f)] eiSlm(f)
. (26)

Since small-scale perturbations on l-th andm-th multiple
images are to a good approximation regarded as statis-
tically independent as long as the transverse separation
between these multiple images is much larger than the
Fresnel scale, convergence power spectra P(k) can be
defined as

h̃l(k)̃m(k0)i = �lm(2⇡)2�D(k + k0)P l
(k), (27)

where �lm denotes the Kronecker delta. Using this rela-
tion, we can compute dispersions of Klm(f) and Slm(f)
as

hK2

lm(f)i = hK2

l (f)i + hK2

m(f)i, (28)
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In evaluating Eq. (16), it is useful to consider the
Fourier transform of �0(r)
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where subscript j is added to convergence to make it clear
that it is the small-scale convergence field in the vicinity
of qj , which is defined to have zero mean i.e., hi = 0.
Inserting these expressions, we obtain
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From the explicit expressions of the complex amplifi-

cation factors, we also obtain
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This is a general expression of the complex amplification
factor in the presence of small-scale perturbations on the
Fresnel scale. We note that this expression can be applied
to not only multiple images for a strongly lensed system
but also single image systems. We also note that previous
work [5, 8, 9] essentially corresponds to a special situation
with µj,1 = µj,2 = 1.

It is worth noting that F
j is not a direct observable,

because an intrinsic, unlensed waveform is usually un-
known. However, waveforms of compact binary mergers

are parameterized by a small number of physical param-
eters of binaries including mass and spin as well as the
configuration of the detector with respect to the direction
of the source, and any deviations from physical templates
may be ascribed to wave optics e↵ects in the propagation
of gravitational waves. Previous work [25, 26] explored
the possibility of using such wave optics signature in in-
dividual binary merger waveforms to probe small-mass
subhalos.

B. Amplitude and phase fluctuations for multiply

imaged gravitational waves

Here we discuss an alternative approach to detect am-
plitude and phase fluctuations by comparing waveforms
of multiple images. In this case, by comparing wave-
form shapes of l-th and m-th multiple images with their
time delay �tlm, which should be determined from the
data, we can measure the ratio of complex magnification
factors that is is independent of an intrinsic waveform.
Specifically, we define the ratio as

Rlm(f) = e
�2⇡if�tlm F

l(f, q�)

Fm(f, q�)

=
|µ0(ql)|1/2

|µ0(qm)|1/2
e
�i⇡(nl�nm)sgn(f) [1 + ⌘lm(f)] ,
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where
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h
̃l(k)G̃l(k, f) � ̃m(k)G̃m(k, f)
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The function ⌘lm(f) describes e↵ects of small-scale per-
turbations, which for instance induces additional phase
shift on top of the phase shift due to the Morse in-
dex [24, 27, 28], and represents perturbative wave op-
tics e↵ects. We further decompose ⌘lm(f) into amplitude
Klm(f) and phase fluctuations Slm(f) as

1 + ⌘lm(f) ' [1 +Klm(f)] eiSlm(f)
. (26)

Since small-scale perturbations on l-th andm-th multiple
images are to a good approximation regarded as statis-
tically independent as long as the transverse separation
between these multiple images is much larger than the
Fresnel scale, convergence power spectra P(k) can be
defined as

h̃l(k)̃m(k0)i = �lm(2⇡)2�D(k + k0)P l
(k), (27)

where �lm denotes the Kronecker delta. Using this rela-
tion, we can compute dispersions of Klm(f) and Slm(f)
as

hK2

lm(f)i = hK2

l (f)i + hK2

m(f)i, (28)

3

In evaluating Eq. (16), it is useful to consider the
Fourier transform of �0(r)
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In the Fourier space, �̃
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where subscript j is added to convergence to make it clear
that it is the small-scale convergence field in the vicinity
of qj , which is defined to have zero mean i.e., hi = 0.
Inserting these expressions, we obtain
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From the explicit expressions of the complex amplifi-

cation factors, we also obtain
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By using this expression, we finally obtain
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This is a general expression of the complex amplification
factor in the presence of small-scale perturbations on the
Fresnel scale. We note that this expression can be applied
to not only multiple images for a strongly lensed system
but also single image systems. We also note that previous
work [5, 8, 9] essentially corresponds to a special situation
with µj,1 = µj,2 = 1.

It is worth noting that F
j is not a direct observable,

because an intrinsic, unlensed waveform is usually un-
known. However, waveforms of compact binary mergers

are parameterized by a small number of physical param-
eters of binaries including mass and spin as well as the
configuration of the detector with respect to the direction
of the source, and any deviations from physical templates
may be ascribed to wave optics e↵ects in the propagation
of gravitational waves. Previous work [25, 26] explored
the possibility of using such wave optics signature in in-
dividual binary merger waveforms to probe small-mass
subhalos.

B. Amplitude and phase fluctuations for multiply

imaged gravitational waves

Here we discuss an alternative approach to detect am-
plitude and phase fluctuations by comparing waveforms
of multiple images. In this case, by comparing wave-
form shapes of l-th and m-th multiple images with their
time delay �tlm, which should be determined from the
data, we can measure the ratio of complex magnification
factors that is is independent of an intrinsic waveform.
Specifically, we define the ratio as

Rlm(f) = e
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l(f, q�)

Fm(f, q�)

=
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The function ⌘lm(f) describes e↵ects of small-scale per-
turbations, which for instance induces additional phase
shift on top of the phase shift due to the Morse in-
dex [24, 27, 28], and represents perturbative wave op-
tics e↵ects. We further decompose ⌘lm(f) into amplitude
Klm(f) and phase fluctuations Slm(f) as

1 + ⌘lm(f) ' [1 +Klm(f)] eiSlm(f)
. (26)

Since small-scale perturbations on l-th andm-th multiple
images are to a good approximation regarded as statis-
tically independent as long as the transverse separation
between these multiple images is much larger than the
Fresnel scale, convergence power spectra P(k) can be
defined as

h̃l(k)̃m(k0)i = �lm(2⇡)2�D(k + k0)P l
(k), (27)

where �lm denotes the Kronecker delta. Using this rela-
tion, we can compute dispersions of Klm(f) and Slm(f)
as

hK2

lm(f)i = hK2

l (f)i + hK2

m(f)i, (28)
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In evaluating Eq. (16), it is useful to consider the
Fourier transform of �0(r)
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where subscript j is added to convergence to make it clear
that it is the small-scale convergence field in the vicinity
of qj , which is defined to have zero mean i.e., hi = 0.
Inserting these expressions, we obtain
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From the explicit expressions of the complex amplifi-

cation factors, we also obtain
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By using this expression, we finally obtain
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This is a general expression of the complex amplification
factor in the presence of small-scale perturbations on the
Fresnel scale. We note that this expression can be applied
to not only multiple images for a strongly lensed system
but also single image systems. We also note that previous
work [5, 8, 9] essentially corresponds to a special situation
with µj,1 = µj,2 = 1.

It is worth noting that F
j is not a direct observable,

because an intrinsic, unlensed waveform is usually un-
known. However, waveforms of compact binary mergers

are parameterized by a small number of physical param-
eters of binaries including mass and spin as well as the
configuration of the detector with respect to the direction
of the source, and any deviations from physical templates
may be ascribed to wave optics e↵ects in the propagation
of gravitational waves. Previous work [25, 26] explored
the possibility of using such wave optics signature in in-
dividual binary merger waveforms to probe small-mass
subhalos.

B. Amplitude and phase fluctuations for multiply

imaged gravitational waves

Here we discuss an alternative approach to detect am-
plitude and phase fluctuations by comparing waveforms
of multiple images. In this case, by comparing wave-
form shapes of l-th and m-th multiple images with their
time delay �tlm, which should be determined from the
data, we can measure the ratio of complex magnification
factors that is is independent of an intrinsic waveform.
Specifically, we define the ratio as
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The function ⌘lm(f) describes e↵ects of small-scale per-
turbations, which for instance induces additional phase
shift on top of the phase shift due to the Morse in-
dex [24, 27, 28], and represents perturbative wave op-
tics e↵ects. We further decompose ⌘lm(f) into amplitude
Klm(f) and phase fluctuations Slm(f) as

1 + ⌘lm(f) ' [1 +Klm(f)] eiSlm(f)
. (26)

Since small-scale perturbations on l-th andm-th multiple
images are to a good approximation regarded as statis-
tically independent as long as the transverse separation
between these multiple images is much larger than the
Fresnel scale, convergence power spectra P(k) can be
defined as

h̃l(k)̃m(k0)i = �lm(2⇡)2�D(k + k0)P l
(k), (27)

where �lm denotes the Kronecker delta. Using this rela-
tion, we can compute dispersions of Klm(f) and Slm(f)
as

hK2
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m(f)i, (28)
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In evaluating Eq. (16), it is useful to consider the
Fourier transform of �0(r)
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where subscript j is added to convergence to make it clear
that it is the small-scale convergence field in the vicinity
of qj , which is defined to have zero mean i.e., hi = 0.
Inserting these expressions, we obtain
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From the explicit expressions of the complex amplifi-

cation factors, we also obtain
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By using this expression, we finally obtain
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This is a general expression of the complex amplification
factor in the presence of small-scale perturbations on the
Fresnel scale. We note that this expression can be applied
to not only multiple images for a strongly lensed system
but also single image systems. We also note that previous
work [5, 8, 9] essentially corresponds to a special situation
with µj,1 = µj,2 = 1.

It is worth noting that F
j is not a direct observable,

because an intrinsic, unlensed waveform is usually un-
known. However, waveforms of compact binary mergers

are parameterized by a small number of physical param-
eters of binaries including mass and spin as well as the
configuration of the detector with respect to the direction
of the source, and any deviations from physical templates
may be ascribed to wave optics e↵ects in the propagation
of gravitational waves. Previous work [25, 26] explored
the possibility of using such wave optics signature in in-
dividual binary merger waveforms to probe small-mass
subhalos.

B. Amplitude and phase fluctuations for multiply

imaged gravitational waves

Here we discuss an alternative approach to detect am-
plitude and phase fluctuations by comparing waveforms
of multiple images. In this case, by comparing wave-
form shapes of l-th and m-th multiple images with their
time delay �tlm, which should be determined from the
data, we can measure the ratio of complex magnification
factors that is is independent of an intrinsic waveform.
Specifically, we define the ratio as

Rlm(f) = e
�2⇡if�tlm F

l(f, q�)

Fm(f, q�)

=
|µ0(ql)|1/2

|µ0(qm)|1/2
e
�i⇡(nl�nm)sgn(f) [1 + ⌘lm(f)] ,

(24)

where

⌘lm(f) =

Z
dk

(2⇡)2

h
̃l(k)G̃l(k, f) � ̃m(k)G̃m(k, f)

i
.

(25)
The function ⌘lm(f) describes e↵ects of small-scale per-
turbations, which for instance induces additional phase
shift on top of the phase shift due to the Morse in-
dex [24, 27, 28], and represents perturbative wave op-
tics e↵ects. We further decompose ⌘lm(f) into amplitude
Klm(f) and phase fluctuations Slm(f) as

1 + ⌘lm(f) ' [1 +Klm(f)] eiSlm(f)
. (26)

Since small-scale perturbations on l-th andm-th multiple
images are to a good approximation regarded as statis-
tically independent as long as the transverse separation
between these multiple images is much larger than the
Fresnel scale, convergence power spectra P(k) can be
defined as

h̃l(k)̃m(k0)i = �lm(2⇡)2�D(k + k0)P l
(k), (27)

where �lm denotes the Kronecker delta. Using this rela-
tion, we can compute dispersions of Klm(f) and Slm(f)
as

hK2

lm(f)i = hK2

l (f)i + hK2

m(f)i, (28)

•増幅因子の一般的な解析的表式を導出

摂動的な波動光学効果

増幅因子の幾何光学
極限の表式

小スケール
ダークマター分布
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M⊙ 10 102 103 104 105 106 107 108

潮汐ストリーム

強い重力レンズ

焦線通過

重力波の波動光学重力レンズ (？)
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• 観測的宇宙論の進展によって標準宇宙論が確立したが　　　
観測の精密化にともなって新しい謎が出てきている

• 大スケール観測でH0問題, S8問題など標準宇宙論の綻びの
可能性が浮上し, 盛んに研究されている

• ダークマターの解明に向けて小スケール宇宙論も大きく
進展している

• 観測的宇宙論は成熟しつつあるが, 一方で未開拓の面白い
問題もまだまだたくさんある


