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Plan of this talk
• standard siren without redshift info with cross-

correlation approach 
    [MO Phys. Rev. D 93(2016)083511]

• effect of gravitational lensing on the distribution 
of binary black hole mergers

    [MO MNRAS 480(2018)3842]



Gravitational waves (GW)

R. Hurt/Caltech-JPL/EPA

• observed for the 
first time in 2015

• mergers of compact 
binaries such as 
black hole (BH) and 
neutron star (NS)

• very useful probe 
of cosmology and 
astrophysics!



Gravitational wave standard sirens

• we can infer mass (→GW amplitude) of inspiraling 
compact binary from the waveform 

• by comparing with observed amplitude, we can 
measure luminosity distance (incl. H0) directly 
(Schutz 1986)

louder

less loud
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propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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Redshift information
• standard siren can constrain H0 and other 

cosmological parameters if the redshift is known

• usually detection of EM counterpart and/or 
host galaxy is needed for the redshift

• this is challenging because of the poor localization 
accuracy (currently >10−100 deg2)



GW170817 (NS-NS merger)

In the mid-1960s, gamma-ray bursts (GRBs) were discovered
by the Vela satellites, and their cosmic origin was first established
by Klebesadel et al. (1973). GRBs are classified as long or short,
based on their duration and spectral hardness(Dezalay et al. 1992;
Kouveliotou et al. 1993). Uncovering the progenitors of GRBs
has been one of the key challenges in high-energy astrophysics
ever since(Lee & Ramirez-Ruiz 2007). It has long been
suggested that short GRBs might be related to neutron star
mergers (Goodman 1986; Paczynski 1986; Eichler et al. 1989;
Narayan et al. 1992).

In 2005, the field of short gamma-ray burst (sGRB) studies
experienced a breakthrough (for reviews see Nakar 2007; Berger
2014) with the identification of the first host galaxies of sGRBs
and multi-wavelength observation (from X-ray to optical and
radio) of their afterglows (Berger et al. 2005; Fox et al. 2005;
Gehrels et al. 2005; Hjorth et al. 2005b; Villasenor et al. 2005).
These observations provided strong hints that sGRBs might be
associated with mergers of neutron stars with other neutron stars
or with black holes. These hints included: (i) their association with
both elliptical and star-forming galaxies (Barthelmy et al. 2005;
Prochaska et al. 2006; Berger et al. 2007; Ofek et al. 2007; Troja
et al. 2008; D’Avanzo et al. 2009; Fong et al. 2013), due to a very
wide range of delay times, as predicted theoretically(Bagot et al.
1998; Fryer et al. 1999; Belczynski et al. 2002); (ii) a broad
distribution of spatial offsets from host-galaxy centers(Berger
2010; Fong & Berger 2013; Tunnicliffe et al. 2014), which was
predicted to arise from supernova kicks(Narayan et al. 1992;
Bloom et al. 1999); and (iii) the absence of associated
supernovae(Fox et al. 2005; Hjorth et al. 2005c, 2005a;
Soderberg et al. 2006; Kocevski et al. 2010; Berger et al.
2013a). Despite these strong hints, proof that sGRBs were
powered by neutron star mergers remained elusive, and interest
intensified in following up gravitational-wave detections electro-
magnetically(Metzger & Berger 2012; Nissanke et al. 2013).

Evidence of beaming in some sGRBs was initially found by
Soderberg et al. (2006) and Burrows et al. (2006) and confirmed

by subsequent sGRB discoveries (see the compilation and
analysis by Fong et al. 2015 and also Troja et al. 2016). Neutron
star binary mergers are also expected, however, to produce
isotropic electromagnetic signals, which include (i) early optical
and infrared emission, a so-called kilonova/macronova (hereafter
kilonova; Li & Paczyński 1998; Kulkarni 2005; Rosswog 2005;
Metzger et al. 2010; Roberts et al. 2011; Barnes & Kasen 2013;
Kasen et al. 2013; Tanaka & Hotokezaka 2013; Grossman et al.
2014; Barnes et al. 2016; Tanaka 2016; Metzger 2017) due to
radioactive decay of rapid neutron-capture process (r-process)
nuclei(Lattimer & Schramm 1974, 1976) synthesized in
dynamical and accretion-disk-wind ejecta during the merger;
and (ii) delayed radio emission from the interaction of the merger
ejecta with the ambient medium (Nakar & Piran 2011; Piran et al.
2013; Hotokezaka & Piran 2015; Hotokezaka et al. 2016). The
late-time infrared excess associated with GRB 130603B was
interpreted as the signature of r-process nucleosynthesis (Berger
et al. 2013b; Tanvir et al. 2013), and more candidates were
identified later (for a compilation see Jin et al. 2016).
Here, we report on the global effort958 that led to the first joint

detection of gravitational and electromagnetic radiation from a
single source. An ∼ 100 s long gravitational-wave signal
(GW170817) was followed by an sGRB (GRB 170817A) and
an optical transient (SSS17a/AT 2017gfo) found in the host
galaxy NGC 4993. The source was detected across the
electromagnetic spectrum—in the X-ray, ultraviolet, optical,
infrared, and radio bands—over hours, days, and weeks. These
observations support the hypothesis that GW170817 was
produced by the merger of two neutron stars in NGC4993,
followed by an sGRB and a kilonova powered by the radioactive
decay of r-process nuclei synthesized in the ejecta.

Figure 1. Localization of the gravitational-wave, gamma-ray, and optical signals. The left panel shows an orthographic projection of the 90% credible regions from
LIGO (190 deg2; light green), the initial LIGO-Virgo localization (31 deg2; dark green), IPN triangulation from the time delay between Fermi and INTEGRAL (light
blue), and Fermi-GBM (dark blue). The inset shows the location of the apparent host galaxy NGC 4993 in the Swope optical discovery image at 10.9 hr after the
merger (top right) and the DLT40 pre-discovery image from 20.5 days prior to merger (bottom right). The reticle marks the position of the transient in both images.

958 A follow-up program established during initial LIGO-Virgo observations
(Abadie et al. 2012) was greatly expanded in preparation for Advanced LIGO-
Virgo observations. Partners have followed up binary black hole detections,
starting with GW150914 (Abbott et al. 2016a), but have discovered no firm
electromagnetic counterparts to those events.

2

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.
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The measurement of the GW polarization is cru-
cial for inferring the binary inclination. This in-
clination, ◆, is defined as the angle between the
line of sight vector from the source to the detec-
tor and the orbital angular momentum vector of
the binary system. For electromagnetic (EM) phe-
nomena it is typically not possible to tell whether a
system is orbiting clockwise or counter-clockwise
(or, equivalently, face-on or face-off), and sources
are therefore usually characterized by a viewing
angle: min (◆, 180� � ◆). By contrast, GW mea-
surements can identify the sense of the rotation,
and thus ◆ ranges from 0 (counter-clockwise) to
180 deg (clockwise). Previous GW detections by
LIGO had large uncertainties in luminosity dis-
tance and inclination (Abbott et al. 2016a) because
the two LIGO detectors that were involved are
nearly co-aligned, preventing a precise polariza-
tion measurement. In the present case, thanks to
Virgo as an additional detector, the cosine of the
inclination can be constrained at 68.3% (1�) con-
fidence to the range [�1.00,�0.81] corresponding
to inclination angles between [144, 180] deg. This
implies that the plane of the binary orbit is almost,
but not quite, perpendicular to our line of sight
to the source (◆ ⇡ 180 deg), which is consistent
with the observation of a coincident GRB (LVC,
GBM, & INTEGRAL 2017 in prep.; Goldstein et
al. 2017, ApJL, submitted; Savchenko et al. 2017,
ApJL, submitted). We report inferences on cos ◆
because our prior for it is flat, so the posterior is
proportional to the marginal likelihood for it from
the GW observations.

EM follow-up of the GW sky localization re-
gion (Abbott et al. 2017c) discovered an opti-
cal transient (Coulter et al. 2017; Soares-Santos
et al. 2017; Valenti et al. 2017; Arcavi et al. 2017;
Tanvir et al. 2017; Lipunov et al. 2017) in close
proximity to the galaxy NGC 4993. The location
of the transient was previously observed by the
Distance Less Than 40 Mpc (DLT40) survey on
2017 July 27.99 UT and no sources were found
(Valenti et al. 2017). We estimate the probability

Figure 1. GW170817 measurement of H0. Marginal-
ized posterior density for H0 (blue curve). Constraints
at 1- and 2� from Planck (Planck Collaboration et al.
2016) and SHoES (Riess et al. 2016) are shown in
green and orange. The maximum a posteriori value
and minimal 68.3% credible interval from this PDF is
H0 = 70.0+12.0

�8.0 km s

�1
Mpc

�1. The 68.3% (1�) and
95.4% (2�) minimal credible intervals are indicated by
dashed and dotted lines.

of a random chance association between the opti-
cal counterpart and NGC 4993 to be 0.004% (see
the Methods section for details). In what follows
we assume that the optical counterpart is associ-
ated with GW170817, and that this source resides
in NGC 4993.

To compute H0 we need to estimate the back-
ground Hubble flow velocity at the position of
NGC 4993. In the traditional electromagnetic cal-
ibration of the cosmic “distance ladder” (Freed-
man et al. 2001), this step is commonly carried
out using secondary distance indicator informa-
tion, such as the Tully-Fisher relation (Sakai et al.
2000), which allows one to infer the background
Hubble flow velocity in the local Universe scaled
back from more distant secondary indicators cal-
ibrated in quiet Hubble flow. We do not adopt
this approach here, however, in order to preserve
more fully the independence of our results from
the electromagnetic distance ladder. Instead we
estimate the Hubble flow velocity at the position

• GRB and kilonova detected, host galaxy identified

• first constraint on H0 from gravitational waves



Future?

• kilonova is faint (~24 mag @ 400 Mpc)

• short GRB observed only on-axis                 
(e.g., Dalal+2006, Nissanke+2010)

• what about BH-BH mergers?

standard siren without redshift?



Cross-correlation approach

• idea: constrain distance-redshift relation with 
cross-correlation of GW sources (known DL) 
and galaxies (known z)

• similar to “clustering redshift” (e.g., Newman 2008)

• no follow-up of GW sources needed

MO Phys. Rev. D93(2016)083511
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Cross-correlation approach

Dobs D(zgal)

• cross-correlation of 
spatial distributions

• when Dobs > D(zgal) 
cross-correlation is 
small
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Gravitational lensing as noise

sourceobs
lens (dark matter+baryon)

light ray

• gravitational lensing magnification µ changes 
the observed luminosity distance

(GW)



Apparent clustering due to lensing

D=constDobs=const

• lensing depends on 
sky position 

• induces additional 
clustering pattern 
on the sky



Cross-correlation signals
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Ctjgj (ℓ) =

∫ ∞

0
dzW t

i (z)

∫ z

0
dz′W g

j (z
′)Wκ(z′; z)

×
H(z′)

χ′2
bgPm

(

ℓ+ 1/2

χ′
; z′

)

. (20)

We use the linear power spectrum for Pm(k; z) in both
Csigj and Ctjgj . The power spectrum Csigj comes from
the first term of Eq. (8) and represents the physical corre-
lation of spatial distributions. On the other hand, Ctjgj ,
which comes from the second term of Eq. (8), is the cor-
relation of the weak lensing effect on luminosity distances
of GW sources with spectroscopic galaxies. Since all
matter fluctuations along the line-of-sight contributes to
weak lensing, it induces non-negligible cross-correlations
between luminosity and redshift bins which are well sep-
arated with each other.

III. RESULT

A. Cross-correlation signal

First it is useful to study the cross angular power spec-
trum Cwigj (ℓ) which is defined in Eq. (18). We fix the lu-
minosity distance bin of GW sources to that corresponds
to 0.9 < z < 1.1 in our fiducial cosmological model.
On the other hand, we move the central redshift of the
spectroscopic galaxy sample while fixing the bin width
to ∆z = 0.1 in order to see how the cross-correlation
signal changes as a function of the redshift of the spec-
troscopic galaxy sample. For bias parameters, we assume
a simple parametric form bGW(z) = bw1 + bw2/D(z) and
bg = bg1+bg2/D(z), whereD(z) is the linear growth rate,
and choose fiducial parameter values as bw1 = bw2 = 1
and bg1 = bg2 = 1.

Fig. 1 shows the cross-correlation power spectrum at
multiple ℓ = 100 as a function of the central redshift of
the spectroscopic galaxy sample zg. When the redshift of
the spectroscopic galaxy sample well overlaps with that of
GW sources, the cross-correlation signal becomes large.
In this case, the cross-correlation signal is dominated by
the physical correlation of density fields of GW sources
and spectroscopic galaxies, which corresponds to Csg de-
fined in Eq. (19). The cross-correlation signal is max-
imized when the luminosity distance bin best matches
with the redshift bin, from which we can infer the relation
between the luminosity distance and redshift. However,
Fig. 1 indicates that the cross-correlation signal extend
to much lower redshift of the spectroscopic galaxy sam-
ple. This extra correlation originates from Ctg defined
in Eq. (20). As stated above, this term represents the
correlation of galaxies and matter fluctuations along the
line-of-sight that induces weak gravitational lensing ef-
fect on luminosity distances of GW sources. We include
this large-distance cross-correlations in our Fisher matrix
analysis below.

FIG. 1: The cross-correlation power spectrum Cwg between
GW sources and galaxies [Eq. (18)]. The luminosity dis-
tance range of GW sources is fixed to that corresponds to
0.9 < z < 1.1 (gray shaded region) in our fiducial cosmol-
ogy. The spectroscopic galaxy sample has the redshift range
zg −∆z/2 < z < zg +∆z/2 with ∆z = 0.1. Solid line shows
the cross-correlation power spectrum at multipole ℓ = 100
as a function of the central redshift of the galaxy sample zg.
Dotted and dashed lines show contributions of Csg [Eq. (19)]
and Ctg [Eq. (20)] to Cwg, respectively.

B. Fisher matrix analysis

Here we estimate how well we can constrain the
distance-redshift relation and hence cosmological param-
eters from the cross-correlation analysis. For this pur-
pose we need the covariance matrix of auto- and cross-
correlation power spectra. Assuming Gaussian statistics,
the covariance matrix is given by

Cov
[

Cij(ℓ), Cmn(ℓ′)
]

=
4π

Ωs

δℓℓ′

(2ℓ+ 1)∆ℓ

×
(

C̃imC̃jn + C̃inC̃jm
)

,(21)

where the indices i, j, . . . run over wi and gi, Ωs is the
survey area, ∆ℓ is the width of ℓ bin, and C̃ denotes the
power spectrum including shot noise

C̃ij = Cij + δij
1

n̄i
, (22)

where n̄i is the projected number density given by
Eqs. (7) and (16).
With this covariance matrix, we can compute the

Fisher matrix as

Fαβ =
∑

ℓ

∑

i,j,m,n

∂Cij

∂pα

[

Cov
(

Cij , Cmn
)]−1 ∂Cmn

∂pβ
, (23)

where pα denotes cosmological and nuisance parameters.
A marginalized error on each parameter is obtained by
σ(pα) =

√

(F−1)αα.
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Ctitj (ℓ) =
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0
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0
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H(z′′)
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, (13)

where Pm(k; z) is the matter power spectrum. Since we are interested in relatively large angular scales (ℓ ! 300), the
cross spectrum is dominated by the so-called two-halo term (see e.g., [31]), which suggests that we can use the linear
matter power spectrum for Pm(k; z) in Csisj and Csitj . On the other hand, Ctitj is given by a projection of all matter
fluctuations along the line-of-sight which mixes small and large scale fluctuations. Thus it may be more appropriate
to use the nonlinear matter power spectrum for Pm(k; z) in Ctitj . In this paper, we compute the transfer function of
the linear matter power spectrum using the result in [32], and the nonlinear matter power spectrum using the result
in [33].

D. Cross-correlation with spectroscopic galaxies

Next we consider a spectroscopic galaxy sample in the i-th bin defined by the redshift range zmin,i < z < zmax,i

δ2D,g
i (θ) =

∫ ∞

0
dzW g

i (z)δg(θ, z), (14)

where

W g
i (z) ≡

1

n̄g
i

χ2

H(z)
n̄g(z)Θ(z − zmin,i)Θ(zmax,i − z). (15)

Here the three-dimensional comoving number density of the spectroscopic galaxy sample is denoted by n̄g(z), and the
average projected number density in the i-th bin is simply computed as

n̄g
i =

∫ ∞

0
dz W g

i (z). (16)

In this paper we simply assume a constant number density of n̄g = 10−3h3Mpc−3 which resembles e.g., a spectroscopic
galaxy sample obtained by Euclid [34]. Using the Limber’s approximation, the angular power spectrum of spectroscopic
galaxies between i-th and j-th bins is given by

Cgigj (ℓ) = δij

∫ ∞

0
dz [W g

i (z)]
2 H(z)

χ2
b2gPm

(

ℓ+ 1/2

χ
; z

)

, (17)

where we assumed that there is no overlap of redshift ranges between different redshift bins, and bg is the bias
parameter for the spectroscopic galaxies.
We now consider the cross-correlation between the GW sources and the spectroscopic galaxies. From Eq. (8), we

can compute the cross-correlation power spectrum as

Cwigj (ℓ) = Csigj (ℓ) + Ctigj (ℓ) (18)

Csigj (ℓ) =

∫ ∞

0
dz W s

i (z)W
g
j (z)

H(z)

χ2
bGWbgPm

(

ℓ+ 1/2

χ
; z

)

(19)

Ctjgj (ℓ) =

∫ ∞

0
dzW t

i (z)

∫ z

0
dz′W g

j (z
′)Wκ(z′; z)

H(z′)

χ′2
bgPm

(

ℓ+ 1/2

χ′
; z′

)

(20)

We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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parameter for the spectroscopic galaxies.
We now consider the cross-correlation between the GW sources and the spectroscopic galaxies. From Eq. (8), we

can compute the cross-correlation power spectrum as

Cwigj (ℓ) = Csigj (ℓ) + Ctigj (ℓ) (18)
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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where Pm(k; z) is the matter power spectrum. Since we are interested in relatively large angular scales (ℓ ! 300), the
cross spectrum is dominated by the so-called two-halo term (see e.g., [31]), which suggests that we can use the linear
matter power spectrum for Pm(k; z) in Csisj and Csitj . On the other hand, Ctitj is given by a projection of all matter
fluctuations along the line-of-sight which mixes small and large scale fluctuations. Thus it may be more appropriate
to use the nonlinear matter power spectrum for Pm(k; z) in Ctitj . In this paper, we compute the transfer function of
the linear matter power spectrum using the result in [32], and the nonlinear matter power spectrum using the result
in [33].

D. Cross-correlation with spectroscopic galaxies

Next we consider a spectroscopic galaxy sample in the i-th bin defined by the redshift range zmin,i < z < zmax,i
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Here the three-dimensional comoving number density of the spectroscopic galaxy sample is denoted by n̄g(z), and the
average projected number density in the i-th bin is simply computed as

n̄g
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∫ ∞

0
dz W g

i (z). (16)

In this paper we simply assume a constant number density of n̄g = 10−3h3Mpc−3 which resembles e.g., a spectroscopic
galaxy sample obtained by Euclid [34]. Using the Limber’s approximation, the angular power spectrum of spectroscopic
galaxies between i-th and j-th bins is given by

Cgigj (ℓ) = δij

∫ ∞
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where we assumed that there is no overlap of redshift ranges between different redshift bins, and bg is the bias
parameter for the spectroscopic galaxies.
We now consider the cross-correlation between the GW sources and the spectroscopic galaxies. From Eq. (8), we

can compute the cross-correlation power spectrum as

Cwigj (ℓ) = Csigj (ℓ) + Ctigj (ℓ) (18)
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.

physical spatial 
correlation

apparent clustering due to weak lensing

MO Phys. Rev. D93(2016)083511

z

0.9

1.1

zg−0.05
zg+0.05



Cross-correlation signals

4

Ctjgj (ℓ) =

∫ ∞

0
dzW t

i (z)

∫ z

0
dz′W g

j (z
′)Wκ(z′; z)

×
H(z′)

χ′2
bgPm

(

ℓ+ 1/2

χ′
; z′

)

. (20)

We use the linear power spectrum for Pm(k; z) in both
Csigj and Ctjgj . The power spectrum Csigj comes from
the first term of Eq. (8) and represents the physical corre-
lation of spatial distributions. On the other hand, Ctjgj ,
which comes from the second term of Eq. (8), is the cor-
relation of the weak lensing effect on luminosity distances
of GW sources with spectroscopic galaxies. Since all
matter fluctuations along the line-of-sight contributes to
weak lensing, it induces non-negligible cross-correlations
between luminosity and redshift bins which are well sep-
arated with each other.

III. RESULT

A. Cross-correlation signal

First it is useful to study the cross angular power spec-
trum Cwigj (ℓ) which is defined in Eq. (18). We fix the lu-
minosity distance bin of GW sources to that corresponds
to 0.9 < z < 1.1 in our fiducial cosmological model.
On the other hand, we move the central redshift of the
spectroscopic galaxy sample while fixing the bin width
to ∆z = 0.1 in order to see how the cross-correlation
signal changes as a function of the redshift of the spec-
troscopic galaxy sample. For bias parameters, we assume
a simple parametric form bGW(z) = bw1 + bw2/D(z) and
bg = bg1+bg2/D(z), whereD(z) is the linear growth rate,
and choose fiducial parameter values as bw1 = bw2 = 1
and bg1 = bg2 = 1.

Fig. 1 shows the cross-correlation power spectrum at
multiple ℓ = 100 as a function of the central redshift of
the spectroscopic galaxy sample zg. When the redshift of
the spectroscopic galaxy sample well overlaps with that of
GW sources, the cross-correlation signal becomes large.
In this case, the cross-correlation signal is dominated by
the physical correlation of density fields of GW sources
and spectroscopic galaxies, which corresponds to Csg de-
fined in Eq. (19). The cross-correlation signal is max-
imized when the luminosity distance bin best matches
with the redshift bin, from which we can infer the relation
between the luminosity distance and redshift. However,
Fig. 1 indicates that the cross-correlation signal extend
to much lower redshift of the spectroscopic galaxy sam-
ple. This extra correlation originates from Ctg defined
in Eq. (20). As stated above, this term represents the
correlation of galaxies and matter fluctuations along the
line-of-sight that induces weak gravitational lensing ef-
fect on luminosity distances of GW sources. We include
this large-distance cross-correlations in our Fisher matrix
analysis below.

FIG. 1: The cross-correlation power spectrum Cwg between
GW sources and galaxies [Eq. (18)]. The luminosity dis-
tance range of GW sources is fixed to that corresponds to
0.9 < z < 1.1 (gray shaded region) in our fiducial cosmol-
ogy. The spectroscopic galaxy sample has the redshift range
zg −∆z/2 < z < zg +∆z/2 with ∆z = 0.1. Solid line shows
the cross-correlation power spectrum at multipole ℓ = 100
as a function of the central redshift of the galaxy sample zg.
Dotted and dashed lines show contributions of Csg [Eq. (19)]
and Ctg [Eq. (20)] to Cwg, respectively.

B. Fisher matrix analysis

Here we estimate how well we can constrain the
distance-redshift relation and hence cosmological param-
eters from the cross-correlation analysis. For this pur-
pose we need the covariance matrix of auto- and cross-
correlation power spectra. Assuming Gaussian statistics,
the covariance matrix is given by

Cov
[

Cij(ℓ), Cmn(ℓ′)
]

=
4π

Ωs

δℓℓ′

(2ℓ+ 1)∆ℓ

×
(

C̃imC̃jn + C̃inC̃jm
)

,(21)

where the indices i, j, . . . run over wi and gi, Ωs is the
survey area, ∆ℓ is the width of ℓ bin, and C̃ denotes the
power spectrum including shot noise

C̃ij = Cij + δij
1

n̄i
, (22)

where n̄i is the projected number density given by
Eqs. (7) and (16).
With this covariance matrix, we can compute the

Fisher matrix as

Fαβ =
∑

ℓ

∑

i,j,m,n

∂Cij

∂pα

[

Cov
(

Cij , Cmn
)]−1 ∂Cmn

∂pβ
, (23)

where pα denotes cosmological and nuisance parameters.
A marginalized error on each parameter is obtained by
σ(pα) =

√

(F−1)αα.
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where Pm(k; z) is the matter power spectrum. Since we are interested in relatively large angular scales (ℓ ! 300), the
cross spectrum is dominated by the so-called two-halo term (see e.g., [31]), which suggests that we can use the linear
matter power spectrum for Pm(k; z) in Csisj and Csitj . On the other hand, Ctitj is given by a projection of all matter
fluctuations along the line-of-sight which mixes small and large scale fluctuations. Thus it may be more appropriate
to use the nonlinear matter power spectrum for Pm(k; z) in Ctitj . In this paper, we compute the transfer function of
the linear matter power spectrum using the result in [32], and the nonlinear matter power spectrum using the result
in [33].

D. Cross-correlation with spectroscopic galaxies

Next we consider a spectroscopic galaxy sample in the i-th bin defined by the redshift range zmin,i < z < zmax,i
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Here the three-dimensional comoving number density of the spectroscopic galaxy sample is denoted by n̄g(z), and the
average projected number density in the i-th bin is simply computed as

n̄g
i =

∫ ∞

0
dz W g

i (z). (16)

In this paper we simply assume a constant number density of n̄g = 10−3h3Mpc−3 which resembles e.g., a spectroscopic
galaxy sample obtained by Euclid [34]. Using the Limber’s approximation, the angular power spectrum of spectroscopic
galaxies between i-th and j-th bins is given by
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∫ ∞
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where we assumed that there is no overlap of redshift ranges between different redshift bins, and bg is the bias
parameter for the spectroscopic galaxies.
We now consider the cross-correlation between the GW sources and the spectroscopic galaxies. From Eq. (8), we

can compute the cross-correlation power spectrum as

Cwigj (ℓ) = Csigj (ℓ) + Ctigj (ℓ) (18)
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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where Pm(k; z) is the matter power spectrum. Since we are interested in relatively large angular scales (ℓ ! 300), the
cross spectrum is dominated by the so-called two-halo term (see e.g., [31]), which suggests that we can use the linear
matter power spectrum for Pm(k; z) in Csisj and Csitj . On the other hand, Ctitj is given by a projection of all matter
fluctuations along the line-of-sight which mixes small and large scale fluctuations. Thus it may be more appropriate
to use the nonlinear matter power spectrum for Pm(k; z) in Ctitj . In this paper, we compute the transfer function of
the linear matter power spectrum using the result in [32], and the nonlinear matter power spectrum using the result
in [33].
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Here the three-dimensional comoving number density of the spectroscopic galaxy sample is denoted by n̄g(z), and the
average projected number density in the i-th bin is simply computed as
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i =
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0
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In this paper we simply assume a constant number density of n̄g = 10−3h3Mpc−3 which resembles e.g., a spectroscopic
galaxy sample obtained by Euclid [34]. Using the Limber’s approximation, the angular power spectrum of spectroscopic
galaxies between i-th and j-th bins is given by
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where we assumed that there is no overlap of redshift ranges between different redshift bins, and bg is the bias
parameter for the spectroscopic galaxies.
We now consider the cross-correlation between the GW sources and the spectroscopic galaxies. From Eq. (8), we

can compute the cross-correlation power spectrum as

Cwigj (ℓ) = Csigj (ℓ) + Ctigj (ℓ) (18)
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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where Pm(k; z) is the matter power spectrum. Since we are interested in relatively large angular scales (ℓ ! 300), the
cross spectrum is dominated by the so-called two-halo term (see e.g., [31]), which suggests that we can use the linear
matter power spectrum for Pm(k; z) in Csisj and Csitj . On the other hand, Ctitj is given by a projection of all matter
fluctuations along the line-of-sight which mixes small and large scale fluctuations. Thus it may be more appropriate
to use the nonlinear matter power spectrum for Pm(k; z) in Ctitj . In this paper, we compute the transfer function of
the linear matter power spectrum using the result in [32], and the nonlinear matter power spectrum using the result
in [33].
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Here the three-dimensional comoving number density of the spectroscopic galaxy sample is denoted by n̄g(z), and the
average projected number density in the i-th bin is simply computed as
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In this paper we simply assume a constant number density of n̄g = 10−3h3Mpc−3 which resembles e.g., a spectroscopic
galaxy sample obtained by Euclid [34]. Using the Limber’s approximation, the angular power spectrum of spectroscopic
galaxies between i-th and j-th bins is given by
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where we assumed that there is no overlap of redshift ranges between different redshift bins, and bg is the bias
parameter for the spectroscopic galaxies.
We now consider the cross-correlation between the GW sources and the spectroscopic galaxies. From Eq. (8), we

can compute the cross-correlation power spectrum as

Cwigj (ℓ) = Csigj (ℓ) + Ctigj (ℓ) (18)
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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We use the linear power spectrum for Pm(k; z) in both
Csigj and Ctjgj . The power spectrum Csigj comes from
the first term of Eq. (8) and represents the physical corre-
lation of spatial distributions. On the other hand, Ctjgj ,
which comes from the second term of Eq. (8), is the cor-
relation of the weak lensing effect on luminosity distances
of GW sources with spectroscopic galaxies. Since all
matter fluctuations along the line-of-sight contributes to
weak lensing, it induces non-negligible cross-correlations
between luminosity and redshift bins which are well sep-
arated with each other.

III. RESULT

A. Cross-correlation signal

First it is useful to study the cross angular power spec-
trum Cwigj (ℓ) which is defined in Eq. (18). We fix the lu-
minosity distance bin of GW sources to that corresponds
to 0.9 < z < 1.1 in our fiducial cosmological model.
On the other hand, we move the central redshift of the
spectroscopic galaxy sample while fixing the bin width
to ∆z = 0.1 in order to see how the cross-correlation
signal changes as a function of the redshift of the spec-
troscopic galaxy sample. For bias parameters, we assume
a simple parametric form bGW(z) = bw1 + bw2/D(z) and
bg = bg1+bg2/D(z), whereD(z) is the linear growth rate,
and choose fiducial parameter values as bw1 = bw2 = 1
and bg1 = bg2 = 1.

Fig. 1 shows the cross-correlation power spectrum at
multiple ℓ = 100 as a function of the central redshift of
the spectroscopic galaxy sample zg. When the redshift of
the spectroscopic galaxy sample well overlaps with that of
GW sources, the cross-correlation signal becomes large.
In this case, the cross-correlation signal is dominated by
the physical correlation of density fields of GW sources
and spectroscopic galaxies, which corresponds to Csg de-
fined in Eq. (19). The cross-correlation signal is max-
imized when the luminosity distance bin best matches
with the redshift bin, from which we can infer the relation
between the luminosity distance and redshift. However,
Fig. 1 indicates that the cross-correlation signal extend
to much lower redshift of the spectroscopic galaxy sam-
ple. This extra correlation originates from Ctg defined
in Eq. (20). As stated above, this term represents the
correlation of galaxies and matter fluctuations along the
line-of-sight that induces weak gravitational lensing ef-
fect on luminosity distances of GW sources. We include
this large-distance cross-correlations in our Fisher matrix
analysis below.

FIG. 1: The cross-correlation power spectrum Cwg between
GW sources and galaxies [Eq. (18)]. The luminosity dis-
tance range of GW sources is fixed to that corresponds to
0.9 < z < 1.1 (gray shaded region) in our fiducial cosmol-
ogy. The spectroscopic galaxy sample has the redshift range
zg −∆z/2 < z < zg +∆z/2 with ∆z = 0.1. Solid line shows
the cross-correlation power spectrum at multipole ℓ = 100
as a function of the central redshift of the galaxy sample zg.
Dotted and dashed lines show contributions of Csg [Eq. (19)]
and Ctg [Eq. (20)] to Cwg, respectively.

B. Fisher matrix analysis

Here we estimate how well we can constrain the
distance-redshift relation and hence cosmological param-
eters from the cross-correlation analysis. For this pur-
pose we need the covariance matrix of auto- and cross-
correlation power spectra. Assuming Gaussian statistics,
the covariance matrix is given by

Cov
[

Cij(ℓ), Cmn(ℓ′)
]

=
4π

Ωs

δℓℓ′

(2ℓ+ 1)∆ℓ

×
(

C̃imC̃jn + C̃inC̃jm
)

,(21)

where the indices i, j, . . . run over wi and gi, Ωs is the
survey area, ∆ℓ is the width of ℓ bin, and C̃ denotes the
power spectrum including shot noise

C̃ij = Cij + δij
1

n̄i
, (22)

where n̄i is the projected number density given by
Eqs. (7) and (16).
With this covariance matrix, we can compute the

Fisher matrix as

Fαβ =
∑

ℓ

∑

i,j,m,n

∂Cij

∂pα

[

Cov
(

Cij , Cmn
)]−1 ∂Cmn

∂pβ
, (23)

where pα denotes cosmological and nuisance parameters.
A marginalized error on each parameter is obtained by
σ(pα) =

√

(F−1)αα.

4

Csitj (ℓ) =

∫ ∞

0
dzW t

j (z)

∫ z

0
dz′W s

i (z
′)Wκ(z′; z)

×
H(z′)

χ′2
bGWPm

(

ℓ+ 1/2

χ′
; z′

)

, (12)

Ctitj (ℓ) =

∫ ∞

0
dzW t

i (z)

∫ ∞

0
dz′ W t

j (z
′)

∫ min(z,z′)

0
dz′′

×Wκ(z′′; z)Wκ(z′′; z′)
H(z′′)

χ′′2
Pm

(

ℓ+ 1/2

χ′′
; z′′

)

, (13)

where Pm(k; z) is the matter power spectrum. Since we are interested in relatively large angular scales (ℓ ! 300), the
cross spectrum is dominated by the so-called two-halo term (see e.g., [31]), which suggests that we can use the linear
matter power spectrum for Pm(k; z) in Csisj and Csitj . On the other hand, Ctitj is given by a projection of all matter
fluctuations along the line-of-sight which mixes small and large scale fluctuations. Thus it may be more appropriate
to use the nonlinear matter power spectrum for Pm(k; z) in Ctitj . In this paper, we compute the transfer function of
the linear matter power spectrum using the result in [32], and the nonlinear matter power spectrum using the result
in [33].

D. Cross-correlation with spectroscopic galaxies

Next we consider a spectroscopic galaxy sample in the i-th bin defined by the redshift range zmin,i < z < zmax,i
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H(z)
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Here the three-dimensional comoving number density of the spectroscopic galaxy sample is denoted by n̄g(z), and the
average projected number density in the i-th bin is simply computed as

n̄g
i =

∫ ∞

0
dz W g

i (z). (16)

In this paper we simply assume a constant number density of n̄g = 10−3h3Mpc−3 which resembles e.g., a spectroscopic
galaxy sample obtained by Euclid [34]. Using the Limber’s approximation, the angular power spectrum of spectroscopic
galaxies between i-th and j-th bins is given by
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i (z)]
2 H(z)

χ2
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χ
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where we assumed that there is no overlap of redshift ranges between different redshift bins, and bg is the bias
parameter for the spectroscopic galaxies.
We now consider the cross-correlation between the GW sources and the spectroscopic galaxies. From Eq. (8), we

can compute the cross-correlation power spectrum as

Cwigj (ℓ) = Csigj (ℓ) + Ctigj (ℓ) (18)
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
comes from the second term of Eq. (8), is the correlation of the weak lensing effect on luminosity distances of GW
sources with spectroscopic galaxies. Since all matter fluctuations along the line-of-sight contributes to weak lensing,
it induces non-negligible cross-correlations between luminosity and redshift bins which are well separated with each
other.
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We use the linear power spectrum for Pm(k; z) in both Csigj and Ctjgj . The power spectrum Csigj comes from the
first term of Eq. (8) and represents the physical correlation of spatial distributions. On the other hand, Ctjgj , which
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other.
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FIG. 2: Projected 68% confidence limit constraints in the Ωm-h (top) and Ωm-wde (bottom) planes. In each panel, the other
model parameters are marginalized over. Solid lines show constraints for ℓmax = 300, whereas dotted lines show constraints for
ℓmax = 100.

from σ(h) = 0.016 to 0.030 for ℓmax = 100, and from σ(h) = 0.007 to 0.013 for ℓmax = 300. This suggests that the
cross-correlation technique is still useful even when the GW rate is significantly smaller than our fiducial value.
We note that the expressions of the angular power spectra in this paper have been derived using the Limber’s

approximation which breaks down at small ℓ [30, 36]. We expect that this approximation is valid for the purpose
of this paper, because the cross-correlation signal mainly comes from large ℓ, ℓ ∼ ℓmax, at which the Limber’s
approximation is expected to be reasonably accurate for our choice of ∆z = 0.1 for the spectroscopic galaxy sample.
Limber’s approximation becomes inaccurate for cross-correlation with large redshift differences, but due to relative
large shot noise such cross-correlation does not contribute to the result very much. Although there is a long tail of
cross-correlation signals toward lower redshifts (Fig. 1), it is essentially the cross-correlation of galaxies and matter
at the same redshift and hence the Limber’s approximation is again accurate. Nevertheless, we caution that the full
calculation without the Limber’s approximation may be required for more accurate predictions of the cross-correlation
signals, which is beyond the scope of this paper.

IV. CONCLUSION

GWs from mergers of compact objects such as BHs serve as a useful cosmological probe because they allow us
to directly measure absolute distance scales. However, in order to constrain the distance-redshift relation from GW
sources we also need redshift information. While the redshift information may be obtained from observations of EM
counterparts, it is unclear whether such EM counterparts can be reliably identified, especially for BH-BH mergers. In
this paper, we propose to use the cross-correlation of GW sources with spectroscopic galaxies as an alternative means
of constraining the distance-redshift relation. We have explicitly included the effect of weak gravitational lensing
on luminosity distance estimates in our formulation. Using the Fisher matrix formalism, we have shown that tight
constraints on the Hubble constant as well as dark energy parameters can be obtained by the cross-correlation of GW

• GWs from 3rd-generation 
exp. + galaxies from Euclid 
(0.3 < z < 1.5)

• lmax is related with accuracy 
of GW localizations

• tight constraints on H0 
and w possible with the 
cross-correlation!

MO Phys. Rev. D93(2016)083511



Cross-correlation: Summary
• proposed cross-correlation of GW sources 

and galaxies with known z to constrain H0 
and other cosmological parameters 

• standard siren cosmology without redshift and 
even at high-z

• other applications of cross-correlation?
    − infer progenitor from bias (e.g., Raccanelli+2016)

    − 3D clustering in distance space (e.g., Zhang 2018)

a lot of room to explore!

MO Phys. Rev. D93(2016)083511



Origin of binary BHs?

https://www.ligo.caltech.edu

• ~10-30 M⨀ BHs 
discovered by 
LIGO/VIRGO

• their origin still 
unknown

   − Pop-I/II?
   − Pop-III?
   − PBH?

https://www.ligo.caltech.edu


Models of BH formation

time
z~0 z~10

Pop-I/II
star/BH 

formation

Pop-III
star/BH 

formation

z~30 z≫1000

Primordial
BH

formation

• GW observed at z=0 due to long delay time



Key observation: high-z events
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Fig. 10 The event rates for Pop III (standard), Pop I and II (OLD), and PBBH merger as

a function of z. These rates are derived by differentiating the cumulative event rate in Fig. 5

with respect to ln z. Note here that the detectability may change by the mass distribution

of each model.

globular cluster (GC) M15. This suggests the possibility of the formation of BBHs in the

GC. A BH of mass ∼ 30M⊙ is much larger than the typical mass of the constituent stars,

∼ 1M⊙, so that it will sink down to the center of the GC or star cluster due to dynamical

friction. Then BBHs can be formed in the central high density region of GCs. Since the

escape velocity from GCs is 10 km s−1 or so, the kick velocity in the formation process of

BHs or the kick when BBHs are formed by three-body interaction is high enough for BBHs

to escape from GCs. Rodriguez, Chatterjee, and Rasio [67] performed such a simulation to

show that the event rate is at most ∼ 1/7 of Pop I and II origin BBHs. If we take their result

as it is, the dynamical formation of binaries in GCs gives only a minor contribution of Pop

II origin of BBHs.

From only the chirp mass, total mass and spin angular momentum, it will be difficult to

distinguish the origin of GW150914-like BBHs. This is because the number of parameters

that can be determined by the distribution function of the GW data is much smaller than

that of the unknown model parameters and the distribution functions assumed in each model.

However, the redshift distribution of GW events varies robustly among the models. Namely,

the maximum possible redshift is ∼ 6, 10, and > 30 for Pop I/II, Pop III, and PBBH models,

respectively (see Fig. 10). In Fig. 10, we show the event rates for each model. These event

rates are derived by differentiating the cumulative event rate in Fig. 5 with respect to ln z.

To observe the maximum redshift as a smoking gun to identify the origin of GW150914-like

events, the construction of Pre-DECIGO seems to be the unique possibility.

Pre-DECIGO can observe NS–NS and NS–BH mergers. However no detection of GWs

from the merger of these systems has been done, though many simulations exist. For the

same distance of the source, the SNR for NS–NS and NS–BH (30M⊙) are 0.08 and 0.25

times smaller than for 30M⊙–30M⊙ BBHs. We will here postpone discussing what we can

do using Pre-DECIGO about these sources until the first observations of GWs from these

15/17
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high-z

• different scenarios 
predict different 
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FIG. 3: The number of gravitational wave events of mBH =
30M� black hole pairs originating from redshifts greater than
z (Equation 1) as a function of redshift. The blue curve cor-
responds to the upper limit on the halo mass function [30], a
low value of Mmin (i.e., ignoring the e↵ects of a relative speed
between dark matter and baryons [44]) and a high value of
gas accretion [40]. The dashed blue curve makes the same as-
sumptions as above, but with a modified mass function that
includes a correction corresponding to non-Gaussianity with
fNL = 43 [33]. The red curve assumes the lower limit on the
mass function [31], a large minimum mass (assuming relative
velocities between baryons and dark matter [44]) and a low
gas accretion rate [39]. The shaded area represents everything
in between these two extreme cases. The two vertical lines
correspond to the 5� and 10� sensitivity to mBH = 30M�
black hole pairs with the future gravitational wave detector,
Cosmic Explorer [8].

a truly hard bound that cannot be violated unless some-
thing very drastically di↵erent takes place at high red-
shifts.

The aforementioned assumptions can be relaxed and in
some cases it is easy to read o↵ the e↵ect on the result (as
the vertical axis is a scalable quantity). For example, if
all accreted gas ends up in black holes of mass of mBH =
10M� (instead of 30M�) then the solid curves in Figure 3
simply move up by a factor of 3. If on the other hand only
a fraction of 0.1% of gas ends in black holes of mBH =
30M� then the result of Figure 3 moves down by a factor
of 10�3.

In addition, the assumption of a ��function mass spec-
trum of black holes is not realistic. A range of black hole
masses is most likely present. The e↵ects of such an
assumption have been studied in the context of explain-
ing the current rate of observed black hole merger events
with LIGO [48–55]. In our case, such a black hole mass
function will alter the shape of N (z), but the e↵ect on
zmax is negligible since the factors that give rise to the
cuto↵ remain as discussed earlier (namely the shape of
the halo mass function and the decline in gas infall at
high redshifts).
The prediction of a maximum redshift for black hole

merger events can be tested with future gravitational
wave detectors. In particular, Cosmic Explorer [8] will
have the ability to detect events at these very high red-
shifts. Given the current design capabilities, Cosmic Ex-
plorer will be able to detect the merger of 30M� black
hole pairs at 10� significance out to redshift of z ⇡ 36
and at 5� significance to redshift z ⇡ 44 [8]. These two
limits are shown as vertical dashed lines in Figure 3.
Any detection of an event rate greater than once a year

from a redshift greater than zmax ⇡ 40 will have major
implications for cosmology. It would mean that either
structure formation is not proceeding in the way that is
currently envisioned, or that black hole mergers are due
to some exotic phenomenon. Two such possibilities ex-
ist: a strange non-Gaussianity that is not parametrized
in terms of fNL (e.g., decay of cosmic strings [56]), or
from the merger of primordial black holes [17]. The lat-
ter idea has received considerable attention recently in
light of the spectacular detection of gravitational waves
by LIGO; however at present it seems that other astro-
physical constraints make such a possibility less likely
[57–65]. Nevertheless, if events with redshifts greater
than zmax ⇡ 40 appear with rates greater than once per
year, it may still be possible to disentangle their origin
by looking at their redshift distribution as the exact de-
pendence on redshift will be sensitive to the abundance
of primordial binaries.
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“High-z” events? 
• from GW observations we do not directly 

measure their redshifts

• we measure luminosity distance, which is 
affected by gravitational lensing

• lensing magnification µ can bias redshift 
inferred from the luminosity distance, and 
also chirp mass



Observed redshift and mass
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detectabilities of binary BH mergers in future detectors (Taylor &
Gair 2012; Miyamoto et al. 2017; Li et al. 2018). In this case, the
signal-to-noise ratio ρ of binary BH mergers with masses m1 and
m2 is computed as (Finn 1996)

ρ =
√

5
96π4/3

R⊙

DL(z)

(
Mz

M⊙

)5/6

#
√

I ≡ ρ0#, (15)

R⊙ = cT⊙ = G M⊙

c2
, (16)

Mz = (1 + z)M = (1 + z)
(m1m2)3/5

(m1 + m2)1/5
, (17)

I =
∫ fmax

0
df T

−1/3
⊙ f −7/3{Sn(f )}−1, (18)

where DL(z) is the luminosity distance, Mz is the redshifted chirp
mass, and Sn(f) is the noise power spectrum density of a detector
that has the dimension of Hz−1/2. The angular orientation function #

encapsulates information on the detector with respect to the position
of the binary BH merger on the sky as well as the inclination angle
of the merger event. Assuming the random orientations, the PDF of
# can be well approximated by (Finn 1996)

P (#) = 5#(4 − #)3

256
, (19)

for 0 < # < 4 and P(#) = 0 otherwise. We assume that fmax

corresponds to the frequency at the innermost stable circular orbit
(ISCO) that is given by

fISCO = M⊙

63/2πT⊙(1 + z)M
≈ 4397 Hz

(1 + z)(M/ M⊙)
, (20)

where M = m1 + m2 is the total mass of the binary BH system. For
simplicity, throughout the paper we assume that masses of binary
BHs are always equal e.g. M = 26/5M, to compute fISCO.

4.2 Distribution of binary BH mergers

First we derive the event rate of binary BH mergers for a given
gravitational wave observatory without the effect of gravitational
lensing magnification. Assuming a threshold of the signal-to-noise
ratio of ρ th, the event rate Robs is computed as

Robs =
∫

dz

∫
dM

dV

dz

RGW(z)
1 + z

dp

dM
S(ρth; M, z), (21)

where RGW(z) and dp/dM are the BH merger rate density and the
chirp mass distribution, respectively, presented in Section 4, dV/dz

is the comoving volume element, and a factor 1/(1 + z) takes account
of the cosmological time dilation. The effect of the signal-to-noise
ratio threshold ρ th is included in S(ρth; M, z) as

S(ρth; M, z) = T (4) − T (ρth/ρ0), (22)

T (#) = #2

256
(160 − 80# + 15#2 − #3), (23)

for ρ th/ρ0 < 4 and S(ρth; M, z) = 0 otherwise.
Next we consider the effect of gravitational lensing magnification.

Ignoring the effect of the phase shift (Dai & Venumadhav 2017), we
can include the effect of lensing magnification µ in the geometric
optics limit simply by shifting the luminosity distance as

DL(z) → DL(z)
√

µ
. (24)

Therefore, in presence of the lensing effect, the event rate is com-
puted as

Robs =
∫

dz

∫
dµ

dP

dµ

∫
dM

dV

dz

RGW(z)
1 + z

dp

dM
×Slens(ρth; M, z, µ), (25)

Slens(ρth; M, z, µ) = T (4) − T (ρth/(
√

µρ0)), (26)

for ρth/(
√

µρ0) < 4 and Slens(ρth; M, z, µ) = 0 otherwise, and
dP/dµ is the magnification PDF as a function of redshift derived in
Section 2.

In this paper, we consider how gravitational lensing modifies the
observable distribution of BH mergers. Specifically, we consider
the differential distributions of the ‘observed redshift’ zobs, which
is the redshift inferred from the luminosity distance without the
correction of lensing magnification µ, as well as the ‘observed chirp
mass’ Mobs, which is the chirp mass inferred from the observed
waveform, again without the correction of lensing magnification.
They are simply defined as

DL(zobs) = DL(z)
√

µ
, (27)

Mobs = 1 + z

1 + zobs
M. (28)

By differentiating equation (25) we can obtain differential distribu-
tion of the event rate, dRobs/dzobs and dRobs/dMobs.

4.3 Gravitational wave observatories

In our calculation, information on gravitational wave observatories
is included in the noise power spectrum Sn(f). As specific examples,
we consider Sn(f) from ongoing observatories such as advanced
LIGO (aLIGO)1 for the design specification and KAGRA (Naka-
mura et al. 2016), as well as the so-called third-generation obser-
vatories such as Einstein Telescope (ET, Regimbau et al. 2012)
and Cosmic Explorer (CE, Abbott et al. 2017). We also consider a
planned space mission B-DECIGO (Nakamura et al. 2016) which
is supposed to find binary BH mergers out to high redshifts. The
noise power spectra assumed in this paper are shown in Fig. 6.

5 R ESULTS

5.1 Distributions in various observatories

We first derive differential distributions as a function of observed
redshift zobs (equation 27) as well as observed chirp mass Mobs

(equation 28) for various gravitational wave observatories summa-
rized in Section 4.3. Throughout the paper we adopt the signal-
to-noise threshold of ρ th = 8 to compute expected distributions.
Figs 7–11 show event rate distributions for advanced LIGO, KA-
GRA, Einstein Telescope, Cosmic Explorer, and B-DECIGO, re-
spectively. Here we ignore the measurement errors and show dis-
tributions that would be observed in absence of any measurement
errors. Even without measurement errors, the event rate distribu-
tions are modified due to gravitational lensing magnification that
cannot be corrected for individual event basis.

We find that the differential distributions are modified due to
gravitational lensing magnification, mainly at high zobs and high

1https://www.ligo.caltech.edu
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detectabilities of binary BH mergers in future detectors (Taylor &
Gair 2012; Miyamoto et al. 2017; Li et al. 2018). In this case, the
signal-to-noise ratio ρ of binary BH mergers with masses m1 and
m2 is computed as (Finn 1996)

ρ =
√

5
96π4/3

R⊙

DL(z)

(
Mz

M⊙

)5/6

#
√

I ≡ ρ0#, (15)

R⊙ = cT⊙ = G M⊙

c2
, (16)

Mz = (1 + z)M = (1 + z)
(m1m2)3/5

(m1 + m2)1/5
, (17)

I =
∫ fmax

0
df T

−1/3
⊙ f −7/3{Sn(f )}−1, (18)

where DL(z) is the luminosity distance, Mz is the redshifted chirp
mass, and Sn(f) is the noise power spectrum density of a detector
that has the dimension of Hz−1/2. The angular orientation function #

encapsulates information on the detector with respect to the position
of the binary BH merger on the sky as well as the inclination angle
of the merger event. Assuming the random orientations, the PDF of
# can be well approximated by (Finn 1996)

P (#) = 5#(4 − #)3

256
, (19)

for 0 < # < 4 and P(#) = 0 otherwise. We assume that fmax
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fISCO = M⊙

63/2πT⊙(1 + z)M
≈ 4397 Hz

(1 + z)(M/ M⊙)
, (20)

where M = m1 + m2 is the total mass of the binary BH system. For
simplicity, throughout the paper we assume that masses of binary
BHs are always equal e.g. M = 26/5M, to compute fISCO.

4.2 Distribution of binary BH mergers
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lensing magnification. Assuming a threshold of the signal-to-noise
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∫

dz

∫
dM

dV

dz

RGW(z)
1 + z

dp

dM
S(ρth; M, z), (21)

where RGW(z) and dp/dM are the BH merger rate density and the
chirp mass distribution, respectively, presented in Section 4, dV/dz

is the comoving volume element, and a factor 1/(1 + z) takes account
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S(ρth; M, z) = T (4) − T (ρth/ρ0), (22)
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256
(160 − 80# + 15#2 − #3), (23)

for ρ th/ρ0 < 4 and S(ρth; M, z) = 0 otherwise.
Next we consider the effect of gravitational lensing magnification.

Ignoring the effect of the phase shift (Dai & Venumadhav 2017), we
can include the effect of lensing magnification µ in the geometric
optics limit simply by shifting the luminosity distance as
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µρ0)), (26)

for ρth/(
√

µρ0) < 4 and Slens(ρth; M, z, µ) = 0 otherwise, and
dP/dµ is the magnification PDF as a function of redshift derived in
Section 2.

In this paper, we consider how gravitational lensing modifies the
observable distribution of BH mergers. Specifically, we consider
the differential distributions of the ‘observed redshift’ zobs, which
is the redshift inferred from the luminosity distance without the
correction of lensing magnification µ, as well as the ‘observed chirp
mass’ Mobs, which is the chirp mass inferred from the observed
waveform, again without the correction of lensing magnification.
They are simply defined as

DL(zobs) = DL(z)
√

µ
, (27)

Mobs = 1 + z

1 + zobs
M. (28)

By differentiating equation (25) we can obtain differential distribu-
tion of the event rate, dRobs/dzobs and dRobs/dMobs.

4.3 Gravitational wave observatories

In our calculation, information on gravitational wave observatories
is included in the noise power spectrum Sn(f). As specific examples,
we consider Sn(f) from ongoing observatories such as advanced
LIGO (aLIGO)1 for the design specification and KAGRA (Naka-
mura et al. 2016), as well as the so-called third-generation obser-
vatories such as Einstein Telescope (ET, Regimbau et al. 2012)
and Cosmic Explorer (CE, Abbott et al. 2017). We also consider a
planned space mission B-DECIGO (Nakamura et al. 2016) which
is supposed to find binary BH mergers out to high redshifts. The
noise power spectra assumed in this paper are shown in Fig. 6.

5 R ESULTS

5.1 Distributions in various observatories

We first derive differential distributions as a function of observed
redshift zobs (equation 27) as well as observed chirp mass Mobs

(equation 28) for various gravitational wave observatories summa-
rized in Section 4.3. Throughout the paper we adopt the signal-
to-noise threshold of ρ th = 8 to compute expected distributions.
Figs 7–11 show event rate distributions for advanced LIGO, KA-
GRA, Einstein Telescope, Cosmic Explorer, and B-DECIGO, re-
spectively. Here we ignore the measurement errors and show dis-
tributions that would be observed in absence of any measurement
errors. Even without measurement errors, the event rate distribu-
tions are modified due to gravitational lensing magnification that
cannot be corrected for individual event basis.

We find that the differential distributions are modified due to
gravitational lensing magnification, mainly at high zobs and high

1https://www.ligo.caltech.edu

MNRAS 480, 3842–3855 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/480/3/3842/5068183
by University of Tokyo Library user
on 23 August 2018

• “observed redshift” zobs defined as

• “observed chirp mass” Mobs defined as

μ: magnification factor



Distributions with lensing effects 
• redshift and mass dist. of binary BH mergers 

taking full account of gravitational lensing

• various scenarios: PopI/II, Pop-III, PBH 

• various experiments: aLIGO, KAGRA, ET, 
CE, B-DECIGO

• check how lensing (de-)magnification modify 
these distributions 
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Strong lensing of BH mergers
• difficult to identify multiple images given the poor 

localization on the sky
   → treat multiple images as distinct events

• some images magnified and some demagnified
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Effect of lensing (de-)magnification

• produce apparently very high-z and very 
high mass binary BH merger events

• high-z events due to demagnification,  and 
high mass events due to magnification

• those events are strongly lensed, so should 
be accompanied by other multiple images



Expected multiple image pairs

• advanced LIGO
   − time delay ≲1day
   − high, similar μ
   − Robs < 1 yr−1

3852 M. Oguri

Figure 13. Distributions of time delays and magnifications for pairs of multiple images from the mock strong lens catalogues. As in Fig. 12, we plot mock
data of the Pop-I/II model from 3000 years and 1 year observations for advanced LIGO (left) and Cosmic Explorer (right), respectively. The upper panels show
time delays and magnifications of leading (filled circles) and trailing (crosses) images for any image pairs in the mock catalogues. The bottom panels show
time delays and ratios of magnifications of leading and trailing images.

Table 2. Summary of predicted event rates for various observatories and models of binary BH mergers. Robs denotes the total number of observed events
per year, Rsl is the total number of strongly lensed events per year, ⟨µsl⟩ is the median magnification of strongly lensed events, Rpair is the total number of
observed multiple image pairs per year, !t is the median time delay of the observed multiple image pairs, and ⟨µleading/µtrailing⟩ is the median value of the
ratio of magnifications of leading and trailing images of the observed multiple image pairs. Values of ⟨µsl⟩, Rpair, !t, and ⟨µleading/µtrailing⟩ are derived from
the strong lens mock catalogues (see Section 5.2). Values in parentheses for ⟨µsl⟩, !t, and ⟨µleading/µtrailing⟩ denote 68% ranges, again derived from the strong
lens mock catalogues. For aLIGO/Pop-III (B17) and KAGRA/Pop-III (B17), we fail to construct mock lens catalogues because they predict too low strong
lens event rates.

observatory/model Robs [yr−1] Rsl [yr−1] ⟨µsl⟩ Rpair [yr−1] !t [day] ⟨µleading/µtrailing⟩

aLIGO/Pop-I/II 1.14e+03 5.84e−01 14.35 (3.39–72.71) 7.77e−02 0.006 (0.000–0.739) 1.00 (0.61–1.23)
aLIGO/Pop-III (B17) 2.00e−01 6.21e−05 — — — —
aLIGO/Pop-III (K16) 1.68e+02 3.89e−02 6.32 (2.50–27.97) 3.33e−03 0.433 (0.013–2.906) 1.22 (0.82–1.37)
aLIGO/PBH 4.75e+02 1.35e−01 6.89 (2.40–32.84) 1.43e−02 0.124 (0.002–2.853) 0.92 (0.48–1.54)
KAGRA/Pop-I/II 6.84e+02 1.69e−01 17.49 (3.30–105.11) 2.37e−02 0.002 (0.000–0.090) 1.00 (0.52–1.19)
KAGRA/Pop-III (B17) 5.58e−02 3.81e−06 — — — —
KAGRA/Pop-III (K16) 4.59e+01 3.10e−03 7.65 (2.51–83.11) 6.67e−04 0.005 (0.002–0.008) 1.01 (1.00–1.01)
KAGRA/PBH 1.93e+02 2.00e−02 7.27 (2.65–45.64) 3.33e−03 0.546 (0.139–1.081) 1.05 (0.81–1.79)
ET/Pop-I/II 5.54e+05 1.12e+03 2.10 (0.88–3.55) 4.56e+02 13.741 (1.184–83.138) 2.36 (0.91–6.75)
ET/Pop-III (B17) 5.96e+03 7.38e+01 2.41 (1.70–4.32) 1.50e+01 16.518 (0.736–79.897) 1.95 (0.70–5.10)
ET/Pop-III (K16) 1.13e+05 4.86e+02 2.10 (0.83–3.40) 1.74e+02 15.094 (1.328–96.548) 2.61 (0.93–6.91)
ET/PBH 2.27e+05 1.18e+03 2.25 (1.36–3.93) 3.55e+02 12.942 (1.042–80.279) 2.06 (0.80–5.60)
CE/Pop-I/II 7.31e+05 1.60e+03 1.88 (0.38–3.09) 8.36e+02 20.600 (2.318–113.044) 3.64 (1.24–11.20)
CE/Pop-III (B17) 1.54e+03 1.51e+01 2.44 (1.88–3.98) 2.60e+00 8.266 (0.501–208.184) 3.02 (1.02–6.55)
CE/Pop-III (K16) 9.96e+04 3.96e+02 2.07 (0.60–3.64) 1.82e+02 21.283 (1.444–107.229) 2.90 (0.92–8.78)
CE/PBH 2.47e+05 1.07e+03 2.05 (0.71–3.49) 4.63e+02 18.806 (1.290–108.130) 2.68 (1.01–8.18)
B-DECIGO/Pop-I/II 2.02e+05 4.71e+02 2.36 (1.63–4.19) 9.98e+01 8.252 (0.595–56.830) 1.70 (0.78–4.65)
B-DECIGO/Pop-III (B17) 5.96e+03 9.20e+01 2.50 (1.76–4.84) 1.92e+01 3.430 (0.188–21.441) 1.23 (0.50–2.82)
B-DECIGO/Pop-III (K16) 7.66e+04 3.86e+02 2.27 (1.47–3.94) 1.22e+02 14.577 (1.060–86.073) 1.88 (0.78–4.78)
B-DECIGO/PBH 1.31e+05 1.41e+03 2.63 (1.81–5.43) 2.70e+02 4.965 (0.264–50.640) 1.29 (0.57–3.29)

tail of the distribution at high Mobs is due to highly magnified strong
lens events, which has been recognized in previous work (Dai et al.
2017; Broadhurst et al. 2018; Smith et al. 2018). We have found
that highly demagnified images of strong lensing events also pro-
duce a heavy tail of the distribution at high zobs, which can be easily
detected in future gravitational wave observatories. It has been ar-

gued that the presence or absence of very high redshift BH merger
events provide an important clue for discriminating various binary
BH formation models (Nakamura et al. 2016; Koushiappas & Loeb
2017), but our work demonstrates that the effect of gravitational
lensing has to be taken into account carefully in order to properly
interpret apparently very high redshift events.
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Gravitationally lensed GW??
3852 M. Oguri

Figure 13. Distributions of time delays and magnifications for pairs of multiple images from the mock strong lens catalogues. As in Fig. 12, we plot mock
data of the Pop-I/II model from 3000 years and 1 year observations for advanced LIGO (left) and Cosmic Explorer (right), respectively. The upper panels show
time delays and magnifications of leading (filled circles) and trailing (crosses) images for any image pairs in the mock catalogues. The bottom panels show
time delays and ratios of magnifications of leading and trailing images.

Table 2. Summary of predicted event rates for various observatories and models of binary BH mergers. Robs denotes the total number of observed events
per year, Rsl is the total number of strongly lensed events per year, ⟨µsl⟩ is the median magnification of strongly lensed events, Rpair is the total number of
observed multiple image pairs per year, !t is the median time delay of the observed multiple image pairs, and ⟨µleading/µtrailing⟩ is the median value of the
ratio of magnifications of leading and trailing images of the observed multiple image pairs. Values of ⟨µsl⟩, Rpair, !t, and ⟨µleading/µtrailing⟩ are derived from
the strong lens mock catalogues (see Section 5.2). Values in parentheses for ⟨µsl⟩, !t, and ⟨µleading/µtrailing⟩ denote 68% ranges, again derived from the strong
lens mock catalogues. For aLIGO/Pop-III (B17) and KAGRA/Pop-III (B17), we fail to construct mock lens catalogues because they predict too low strong
lens event rates.

observatory/model Robs [yr−1] Rsl [yr−1] ⟨µsl⟩ Rpair [yr−1] !t [day] ⟨µleading/µtrailing⟩

aLIGO/Pop-I/II 1.14e+03 5.84e−01 14.35 (3.39–72.71) 7.77e−02 0.006 (0.000–0.739) 1.00 (0.61–1.23)
aLIGO/Pop-III (B17) 2.00e−01 6.21e−05 — — — —
aLIGO/Pop-III (K16) 1.68e+02 3.89e−02 6.32 (2.50–27.97) 3.33e−03 0.433 (0.013–2.906) 1.22 (0.82–1.37)
aLIGO/PBH 4.75e+02 1.35e−01 6.89 (2.40–32.84) 1.43e−02 0.124 (0.002–2.853) 0.92 (0.48–1.54)
KAGRA/Pop-I/II 6.84e+02 1.69e−01 17.49 (3.30–105.11) 2.37e−02 0.002 (0.000–0.090) 1.00 (0.52–1.19)
KAGRA/Pop-III (B17) 5.58e−02 3.81e−06 — — — —
KAGRA/Pop-III (K16) 4.59e+01 3.10e−03 7.65 (2.51–83.11) 6.67e−04 0.005 (0.002–0.008) 1.01 (1.00–1.01)
KAGRA/PBH 1.93e+02 2.00e−02 7.27 (2.65–45.64) 3.33e−03 0.546 (0.139–1.081) 1.05 (0.81–1.79)
ET/Pop-I/II 5.54e+05 1.12e+03 2.10 (0.88–3.55) 4.56e+02 13.741 (1.184–83.138) 2.36 (0.91–6.75)
ET/Pop-III (B17) 5.96e+03 7.38e+01 2.41 (1.70–4.32) 1.50e+01 16.518 (0.736–79.897) 1.95 (0.70–5.10)
ET/Pop-III (K16) 1.13e+05 4.86e+02 2.10 (0.83–3.40) 1.74e+02 15.094 (1.328–96.548) 2.61 (0.93–6.91)
ET/PBH 2.27e+05 1.18e+03 2.25 (1.36–3.93) 3.55e+02 12.942 (1.042–80.279) 2.06 (0.80–5.60)
CE/Pop-I/II 7.31e+05 1.60e+03 1.88 (0.38–3.09) 8.36e+02 20.600 (2.318–113.044) 3.64 (1.24–11.20)
CE/Pop-III (B17) 1.54e+03 1.51e+01 2.44 (1.88–3.98) 2.60e+00 8.266 (0.501–208.184) 3.02 (1.02–6.55)
CE/Pop-III (K16) 9.96e+04 3.96e+02 2.07 (0.60–3.64) 1.82e+02 21.283 (1.444–107.229) 2.90 (0.92–8.78)
CE/PBH 2.47e+05 1.07e+03 2.05 (0.71–3.49) 4.63e+02 18.806 (1.290–108.130) 2.68 (1.01–8.18)
B-DECIGO/Pop-I/II 2.02e+05 4.71e+02 2.36 (1.63–4.19) 9.98e+01 8.252 (0.595–56.830) 1.70 (0.78–4.65)
B-DECIGO/Pop-III (B17) 5.96e+03 9.20e+01 2.50 (1.76–4.84) 1.92e+01 3.430 (0.188–21.441) 1.23 (0.50–2.82)
B-DECIGO/Pop-III (K16) 7.66e+04 3.86e+02 2.27 (1.47–3.94) 1.22e+02 14.577 (1.060–86.073) 1.88 (0.78–4.78)
B-DECIGO/PBH 1.31e+05 1.41e+03 2.63 (1.81–5.43) 2.70e+02 4.965 (0.264–50.640) 1.29 (0.57–3.29)

tail of the distribution at high Mobs is due to highly magnified strong
lens events, which has been recognized in previous work (Dai et al.
2017; Broadhurst et al. 2018; Smith et al. 2018). We have found
that highly demagnified images of strong lensing events also pro-
duce a heavy tail of the distribution at high zobs, which can be easily
detected in future gravitational wave observatories. It has been ar-

gued that the presence or absence of very high redshift BH merger
events provide an important clue for discriminating various binary
BH formation models (Nakamura et al. 2016; Koushiappas & Loeb
2017), but our work demonstrates that the effect of gravitational
lensing has to be taken into account carefully in order to properly
interpret apparently very high redshift events.

MNRAS 480, 3842–3855 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/480/3/3842/5068183
by University of Tokyo Library user
on 23 August 2018

S190828l

S190828j

separated 
by 21 min

21 min (!)



Expected multiple image pairs

• Cosmic Explorer
   − time delay   
      ~10-100 days
   − different μ
   − Robs ~ O(103) yr−1
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Figure 13. Distributions of time delays and magnifications for pairs of multiple images from the mock strong lens catalogues. As in Fig. 12, we plot mock
data of the Pop-I/II model from 3000 years and 1 year observations for advanced LIGO (left) and Cosmic Explorer (right), respectively. The upper panels show
time delays and magnifications of leading (filled circles) and trailing (crosses) images for any image pairs in the mock catalogues. The bottom panels show
time delays and ratios of magnifications of leading and trailing images.

Table 2. Summary of predicted event rates for various observatories and models of binary BH mergers. Robs denotes the total number of observed events
per year, Rsl is the total number of strongly lensed events per year, ⟨µsl⟩ is the median magnification of strongly lensed events, Rpair is the total number of
observed multiple image pairs per year, !t is the median time delay of the observed multiple image pairs, and ⟨µleading/µtrailing⟩ is the median value of the
ratio of magnifications of leading and trailing images of the observed multiple image pairs. Values of ⟨µsl⟩, Rpair, !t, and ⟨µleading/µtrailing⟩ are derived from
the strong lens mock catalogues (see Section 5.2). Values in parentheses for ⟨µsl⟩, !t, and ⟨µleading/µtrailing⟩ denote 68% ranges, again derived from the strong
lens mock catalogues. For aLIGO/Pop-III (B17) and KAGRA/Pop-III (B17), we fail to construct mock lens catalogues because they predict too low strong
lens event rates.

observatory/model Robs [yr−1] Rsl [yr−1] ⟨µsl⟩ Rpair [yr−1] !t [day] ⟨µleading/µtrailing⟩

aLIGO/Pop-I/II 1.14e+03 5.84e−01 14.35 (3.39–72.71) 7.77e−02 0.006 (0.000–0.739) 1.00 (0.61–1.23)
aLIGO/Pop-III (B17) 2.00e−01 6.21e−05 — — — —
aLIGO/Pop-III (K16) 1.68e+02 3.89e−02 6.32 (2.50–27.97) 3.33e−03 0.433 (0.013–2.906) 1.22 (0.82–1.37)
aLIGO/PBH 4.75e+02 1.35e−01 6.89 (2.40–32.84) 1.43e−02 0.124 (0.002–2.853) 0.92 (0.48–1.54)
KAGRA/Pop-I/II 6.84e+02 1.69e−01 17.49 (3.30–105.11) 2.37e−02 0.002 (0.000–0.090) 1.00 (0.52–1.19)
KAGRA/Pop-III (B17) 5.58e−02 3.81e−06 — — — —
KAGRA/Pop-III (K16) 4.59e+01 3.10e−03 7.65 (2.51–83.11) 6.67e−04 0.005 (0.002–0.008) 1.01 (1.00–1.01)
KAGRA/PBH 1.93e+02 2.00e−02 7.27 (2.65–45.64) 3.33e−03 0.546 (0.139–1.081) 1.05 (0.81–1.79)
ET/Pop-I/II 5.54e+05 1.12e+03 2.10 (0.88–3.55) 4.56e+02 13.741 (1.184–83.138) 2.36 (0.91–6.75)
ET/Pop-III (B17) 5.96e+03 7.38e+01 2.41 (1.70–4.32) 1.50e+01 16.518 (0.736–79.897) 1.95 (0.70–5.10)
ET/Pop-III (K16) 1.13e+05 4.86e+02 2.10 (0.83–3.40) 1.74e+02 15.094 (1.328–96.548) 2.61 (0.93–6.91)
ET/PBH 2.27e+05 1.18e+03 2.25 (1.36–3.93) 3.55e+02 12.942 (1.042–80.279) 2.06 (0.80–5.60)
CE/Pop-I/II 7.31e+05 1.60e+03 1.88 (0.38–3.09) 8.36e+02 20.600 (2.318–113.044) 3.64 (1.24–11.20)
CE/Pop-III (B17) 1.54e+03 1.51e+01 2.44 (1.88–3.98) 2.60e+00 8.266 (0.501–208.184) 3.02 (1.02–6.55)
CE/Pop-III (K16) 9.96e+04 3.96e+02 2.07 (0.60–3.64) 1.82e+02 21.283 (1.444–107.229) 2.90 (0.92–8.78)
CE/PBH 2.47e+05 1.07e+03 2.05 (0.71–3.49) 4.63e+02 18.806 (1.290–108.130) 2.68 (1.01–8.18)
B-DECIGO/Pop-I/II 2.02e+05 4.71e+02 2.36 (1.63–4.19) 9.98e+01 8.252 (0.595–56.830) 1.70 (0.78–4.65)
B-DECIGO/Pop-III (B17) 5.96e+03 9.20e+01 2.50 (1.76–4.84) 1.92e+01 3.430 (0.188–21.441) 1.23 (0.50–2.82)
B-DECIGO/Pop-III (K16) 7.66e+04 3.86e+02 2.27 (1.47–3.94) 1.22e+02 14.577 (1.060–86.073) 1.88 (0.78–4.78)
B-DECIGO/PBH 1.31e+05 1.41e+03 2.63 (1.81–5.43) 2.70e+02 4.965 (0.264–50.640) 1.29 (0.57–3.29)

tail of the distribution at high Mobs is due to highly magnified strong
lens events, which has been recognized in previous work (Dai et al.
2017; Broadhurst et al. 2018; Smith et al. 2018). We have found
that highly demagnified images of strong lensing events also pro-
duce a heavy tail of the distribution at high zobs, which can be easily
detected in future gravitational wave observatories. It has been ar-

gued that the presence or absence of very high redshift BH merger
events provide an important clue for discriminating various binary
BH formation models (Nakamura et al. 2016; Koushiappas & Loeb
2017), but our work demonstrates that the effect of gravitational
lensing has to be taken into account carefully in order to properly
interpret apparently very high redshift events.
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Binary BH distribution: Summary

• pronounced lensing effect at high zobs 
and Mobs

• the discovery of apparently very high-z events 
does not necessarily support PBH scenario

• predictions on multiple image pairs

• see the paper for detailed results for different 
BH merger scenarios and GW experiments
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Conclusion
• interesting synergies between GW and 

large-scale structure/gravitational lensing
    − spatial clustering of GW sources
    − observables affected by weak and strong 
       gravitational lensing

• more work needed to fully exploit the potential 
of GW observations!
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Strong gravitational lensing of explosive transients
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Abstract. Recent rapid progress in time domain surveys makes it possible to
detect various types of explosive transients in the Universe in large numbers,
some of which will be gravitationally lensed into multiple images. Although
a large number of strongly lensed distant galaxies and quasars have already
been discovered, strong lensing of explosive transients opens up new applications,
including improved measurements of cosmological parameters, powerful probes
of small scale structure of the Universe, and new observational tests of dark
matter scenarios, thanks to their rapidly evolving light curves as well as their
compact sizes. In particular, the compactness of these transient events indicates
that the wave optics e↵ect plays an important role in some cases, which can lead
to totally new applications of these lensing events. Recently we have witnessed
first discoveries of strongly lensed supernovae, and strong lensing events of other
types of explosive transients such as gamma-ray bursts, fast radio bursts, and
gravitational waves from compact binary mergers are expected to be observed
soon. In this review article, we summarize the current state of research on strong
gravitational lensing of explosive transients and discuss future prospects.

Keywords: cosmology, gravitational lensing, transients
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