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Cluster mass

® one of the most fundamental parameters
that characterize clusters

® not easy to measure because it is dominated
by the mass of dark matter

e critically important for cluster cosmology
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Mass estimates: scatter and bias

“accuracy”’ of mass estimates?

p(M) bias
A . "

>

® scatter
important for analysis of
individual clusters

® bias
important for statistical
analysis even for the case
scatter > bias

Mest Mtrue



Cluster mass estimates
® X-ray hydrostatic equilibrium
small scatter, large bias

® weak gravitational lensing
large scatter, small bias



X-ray hydrostatic equilibrium

® X-ray mass derived w/
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Weak lensing

® purely gravitational effect

® direct measurements of
total mass, including
dark matter!

S. Colombi



Scatter and bias in lensing mass

® scatter
statistical error — shot noise, LSS
halo triaxiality

® bias
profile mismatch
substructure! (not in this talk)
photo-z, dilution, ... (not in this talk)



Halo triaxiality

* ACDM model predicts
highly non-spherical
halo shape

® typical major-to-minor
axis ratio 2:|

http://www.mpa-garching. mpg.de/galform/millennium/


http://www.mpa-garching.mpg.de/galform/millennium/

Observational evidence

® direct measurements of Oguri et al. (2012)
halo shapes w/ WL

® non-sphericity detected
at = 50

(ep) =0.46+0.04 £
(Oguri et al. 2010 w/ LoCusSS) E

{esp) = 0.47+0.06
(Oguri et al. 2012 w/ SGAS)

1

® e)p quite consistent with
ACDM predictions!




Oguri, Takada, Umetsu, Broadhurst Ap] 632(2005)84 1
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® projected mass profile depends sensitively
on the projection direction
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Projection effect
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® |ensing-derived mass and concentration are

significantly affected by the cluster orientation
— ~20-30% scatter in lensing mass




Bias from radial mass profile

® data have often been analyzed assuming a
simple NFWV profile

® any mismatch between assumed and true
mass profiles can cause bias
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p(r)

Possible origins of bias
® concentration c=ryi/rs
r| / central concentration
of radial profile
® steepening
/ cutoff of radial density
) profile beyond ~ryir

—-eo 2-halo term
correlated matter

> fluctuations around
the cluster




Halo concentration

® in some work, specific values p(r)t
or forms of concentrations high c
are assumed to get mass

® the mass would be biased if low ¢
the assumed concentration
IS wrong
>
® concentrations in real clusters r

consistent with ACDM predictions?

(cf. anomalously high concentrations claimed by Broadhurst et al.)
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p(r)

Outer density profile of clusters

A

® has not attracted much
attention until recently

® turned out to be quite
important for accurate
mass measurements

I's Fvir I



Oguri & Hamana MNRAS 414(2011) 1851
Outer lensing profiles
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® detailed lensing profiles from ray-tracing in
N-body simulations

o truncated NFWV profile + 2-halo term can fit
the profile in the simulation well



Oguri & Hamana MNRAS 414(2011) 1851

Truncation radius
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e profiles in simulations are

fitted with a smoothly

truncated NFWV profile
(Baltz, Marshall & Oguri 2009)

., 2\
PeMo () = G+ )2 ( n )

® truncation radius weakly
depends on halo masses,
more massive halos have
smaller truncation radius



Adhikari, Dalal & Chamberlain (2014)
Physical origin of steepening?

® steepening can be explained § W
by “turn-around” of infalling £ MR
material ) ) 4
e this suggests that the cutoff O
radius is partly determined [
by the accretion rate 10° 10’ 10’
p(r)4 - r (radius)
r3
cutoff
> I




Oguri & Hamana MNRAS 414(2011) 1851
Mass bias and outer density profile

virial radius

e fitting shear profiles N
assuming traditional 0.1
NFW without 2-halo . [ | ' @ ——yigmoe

----- 1x1015h~1M, |

® best-fit mass can be
biased low up to

[Mvir(fit) o Mvir]/Mvi

~10%
® bias can be reduced O o S
by restricting fitting 10 emind 100

region to = ryir

(or including steepening
and 2-halo in profile fitting)

thick: r=2.6ry;
thin: re=2.0ryir



Scatter and bias in lensing mass

® scatter
statistical error — shot noise, LSS
halo triaxiality

® bias
profile mismatch
substructure! (not in this talk)

getting more and more understood by
ray-tracing simulations and observations




Statistical lensing mass estimate

® weak lensing mass estimates have large scatter

® one way to beat down scatter is to combine
many measurements — stacked weak lensing

e very powerful approach in the era of wide-field
surveys



Power of stacking

500

® stacking significantly
enhances S/N
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® one can get average
properties very well
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e particularly powerful
when applied to wide -
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Oguri MNRAS 444(2014) 147
Scaling relation

e stacking of CFHTLenS  ,:L | O
data for SDSS clusters - ! E

® calibrate richness-mass
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Bias in stacking analysis

® you need to understand your sample very well
for proper understanding of stacking results

¢ if you take the interpretation of the sample
wrong, stacking analysis results will be biased

® selection function is critically important!



Possible cluster selection effects

® concentration/formation history
® merger

® orientation bias



Effects of merger

® merger can have large impact on observables
® change X-ray properties drastically

® strong lensing cross section also enhanced
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Oguri et al. MNRAS 429(2013)482

An extreme example!

e SDSS J1029+2623

(“the Hidden Fortress™)

® mass distribution
very concentrated

1015 ¢

- !
® mass discrepancy | strong weak lesing
—ray 1sotnerina
MX/MIens~2_3 (!) i X-ray T(r) % %
. . 1014 %
® interpretation: Ny %
line-of-sight merger e
1013: % r r
L T




Cluster selection in optical surveys

optical (galaxy) weak lensing
(see talk by S. Miyazaki)



Orientation bias

e triaxiality affects some cluster selection methods

e then resulting cluster sample has orientation bias,
i.e., cluster orientations w.r.t line-of-sight direction
is not random

® since lensing properties are sensitive to cluster
orientations, the orientation bias can have large
impact on stacked lensing analysis




Estimated orientation bias

optical (galaxy)
~ Dietrich et al. (2014)
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® optical and weak lensing selected clusters are
preferentially aligned with line-of-sight direction!



Summary

® origins of scatter and bias in cluster (lensing) mass
estimates are getting more and more understood
— triaxiality, outer profile, ...

e stacking analysis is powerful in reducing scatter,
but understanding of the selection function is
critically important (e.g., orientation bias)



