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Cluster mass

• one of the most fundamental parameters 
   that characterize clusters

• not easy to measure because it is dominated
   by the mass of dark matter

• critically important for cluster cosmology



Planck 2015

Planck collaboration, arXiv:1502.01597

Planck Collaboration: Cosmology from SZ cluster counts

Fig. 7: Comparison of constraints from the CMB to those from
the cluster counts in the (⌦m,�8)-plane. The green, blue and
violet contours give the cluster constraints (two-dimensional
likelihood) at 1 and 2� for the WtG, CCCP, and CMB lens-
ing mass calibrations, respectively, as listed in Table 2. These
constraints are obtained from the MMF3 catalogue with the
SZ+BAO+BBN data set and ↵ free. Constraints from the Planck
TT, TE, EE+lowP CMB likelihood (hereafter, Planck primary
CMB) are shown as the dashed contours enclosing 1 and 2� con-
fidence regions (Planck Collaboration XIII 2015), while the grey
shaded region also include BAO. The red contours give results
from a joint analysis of the cluster counts, primary CMB and
the Planck lensing power spectrum (Planck Collaboration XV
2015), leaving the mass bias parameter free and ↵ constrained
by the X-ray prior.

6.3. Constraints on ⌦m and �8: comparison to primary CMB

Our 2013 analysis brought to light tension between constraints
on⌦m and�8 from the cluster counts and those from the primary
CMB in the base ⇤CDM model. In that analysis, we adopted a
flat prior on the mass bias over the range 1 � b = [0.7, 1.0], with
a reference model defined by 1 � b = 0.8 (see discussion in the
Appendix of Planck Collaboration XX 2014). Given the good
consistency between the 2013 and 2015 cluster results (Fig. 3),
we expect the tension to remain under the same assumptions con-
cerning the mass bias.

Figure 7 compares our 2015 cluster constraints (MMF3
SZ+BAO+BBN) to those for the base ⇤CDM model from the
Planck CMB anisotropies. The cluster constraints, given the
three di↵erent priors on the mass bias, are shown by the filled
contours at 1 and 2�, while the dashed black contours give the
Planck TT, TE, EE+lowP constraints (hereafter Planck primary
CMB, Planck Collaboration XIII 2015); the grey shaded regions
add BAO to the CMB. The central value of the WtG mass prior
lies at the extreme end of the range used in 2013 (i.e., 1-b=0.7);
with its uncertainty range extending even lower, the tension with
primary CMB is greatly reduced, as pointed out by von der Lin-
den et al. (2014b). With similar uncertainty but a central value
shifted to 1 � b = 0.78, the CCCP mass prior results in greater
tension with the primary CMB. The lensing mass prior, finally,
implies little bias and hence much greater tension.

6.4. Joint Planck 2014 primary CMB and cluster constraints

We now turn to a joint analysis of the cluster counts and primary
CMB. We begin by finding the mass bias required to remove ten-

Fig. 8: Comparison of cluster and primary CMB constraints in
the base ⇤CDM model expressed in terms of the mass bias,
1 � b. The solid black curve shows the distribution of values re-
quired to reconcile the counts and primary CMB in ⇤CDM; it
is found as the posterior on the 1 � b from a joint analysis of
the Planck cluster counts and primary CMB when leaving the
mass bias free. The coloured dashed curves show the three prior
distributions on the mass bias listed in Tab. 2.

sion with the primary CMB, and then consider one-parameter
extensions to the base ⇤CDM model, varying the curvature, the
Thomson optical depth to reionization, the dark energy equation-
of-state, and the neutrino mass scale. Unless otherwise stated,
"CMB" in the following means Planck TT, TE, EE+lowP as de-
fined in Planck Collaboration XIII (2015). All intervals are 68%
confidence and all upper/lower limits are 95%.

6.4.1. Mass bias required by CMB

In Fig. 8 we compare the three prior distributions to the mass
bias required by the primary CMB. The latter is obtained as the
posterior on (1 � b) from a joint analysis of the MMF3 cluster
counts and the CMB with the mass bias as a free parameter. The
best-fit value in this case is (1 � b) = 0.58 ± 0.04, more than 1�
below the central WtG value. Perfect agreement with the primary
CMB would imply that clusters are even more massive than the
WtG calibration. This figure most clearly quantifies the tension
between the Planck cluster counts and primary CMB.

6.4.2. Curvature

By itself the CMB only poorly determines the spatial curvature
(Sect. 6.2.4 of Planck Collaboration XIII 2015), but by including
another astrophysical observation, such as cluster counts, it can
be tightly constrained. Our joint cluster and CMB analysis, with-
out external data, yields ⌦k = �0.012 ± 0.008, consistent with
the constraint from Planck CMB and BAO ⌦k = 0.000 ± 0.002.

6.4.3. Reionization optical depth

Primary CMB temperature anisotropies also provide a precise
measurement of the parameter combination Ase�2⌧, where ⌧ is
the optical depth from Thomson scatter after reionization and As
is the power spectrum normalization on large scales (Planck Col-
laboration XIII 2015). Low-` polarization anisotropies break the
degeneracy by constraining ⌧, but this measurement is delicate
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different
mass 

estimates

different
cosmo.

constraints

• cosmology with Planck
   SZ cluster counts 

• different mass estimates
   yield quite different 
   cosmology results

• uncertainty in cluster  
   mass estimates is the 
   most outstanding issue
   in cluster cosmology!   

Ωm−σ8



Mass estimates: scatter and bias

M

p(M)

MtrueMest

bias

scatter

“accuracy” of mass estimates?

• scatter
   important for analysis of
   individual clusters

• bias 
   important for statistical
   analysis even for the case
   scatter ≫ bias



Cluster mass estimates

• X-ray hydrostatic equilibrium
   small scatter, large bias

• weak gravitational lensing
   large scatter, small bias



X-ray hydrostatic equilibrium
TESTING X-RAY CLUSTER MEASUREMENTS WITH SIMULATIONS 7

FIG. 5.— Same as the upper-panels in Fig. 4, except that the estimated mass
(Mest) is evaluated within the estimated virial radii (rest); hence, Mest and
Mtrue are measured in different physical regions.

the inner region of relaxed clusters, while the deviation from
the hydrostatic equilibrium become more prominent in clus-
ter outskirts and/or unrelaxed systems, as expected. Similar
results are obtained for clusters at high redshift.
The middle panels in Figure 4 illustrate that the X-ray gas

mass determinations are remarkably accurate and robust. The
Mgas measurements are accurate to better than a few percent
for both relaxed and unrelaxed clusters and independent of
redshift. For the relaxed cluster samples, the accuracy of the
Mgas measurements is as good as 1% at rtrue500c with 3% 1 σ
scatter. Although the effect is small (! 6%), the Mgas is biased
high in the outskirts of the unrelaxed systems.
The lower panels of Figure 4 show the biases in measure-

ments of the gas mass fractions. Since the hydrostatic mass
is biased low, the derived fgas are typically biased high. The
bias and scatter in fgas are especially large for the unrelaxed
clusters, since the biases in Mgas and Mtot are added construc-
tively. Both bias and scatter are significantly reduced for re-
laxed clusters; for example, fgas(<rtrue2500c) are accurate to about
10% at z = 0 and 0.6. The biases become larger in cluster out-
skirts, and the biases in fgas(<rtrue500c) are about 18% at both low
and high redshifts.
In practice, additional biases in the estimated cluster masses

(Mest) could arise from a bias in the estimation of a cluster
virial radius. Figure 5 shows the biases in the estimated hy-
drostatic mass within the estimated virial radius, Mest(< rest),
relative to the true cluster mass, Mtrue(< rtrue), measured in
simulations. The column indicated as Mtot(< rest) in Table 2
summarizes average biases and scatter in the estimates of to-
tal cluster masses computed this way. An underestimate of a
cluster virial radius results in the increased bias in the Mtot es-
timate and an underestimate of the derived Mgas by a similar
amount, while leaving fgas relatively unchanged. It is these er-
rors that contribute to the differences in the mass-temperature
relations discussed in § 4.5.
A similar study of biases in the hydrostatic Mtot estimates

has been done recently by Rasia et al. (2006). The cos-
mological simulations were performed using the Gadget-2
SPH code (Springel 2005) and the mock X-ray data were re-
duced closely following the procedure of Ettori et al. (2002).
Their sample included 5 clusters, including two with relaxed
morphology, for which the comparison with our our results
is most relevant. The mass biases in the most comparable
case (direct hydrostatic estimates and reduced Chandra back-
ground level) are −30% and −28% at r2500c, and −15% and
−32% at r500c. These values are on the lower side of our dis-
tribution for relaxed clusters (Fig.4). In particular, none of

FIG. 6.— Comparisons of various average ICM temperatures for the z = 0
sample. The temperature averages are defined in the text. The filled and open
symbols indicate clusters with relaxed and unrelaxed morphology, respec-
tively. For each cluster results for the three projections are shown.

our relaxed clusters shows such strong biases at r = r2500c.
However, it is difficult to compare our results directly. Not
only the cosmological simulation codes are quite different, but
also the data analysis algorithms are completely independent
and significantly different. Investigations of the sources of
discrepancy will require cross-checks (e.g., reduction of our
mock data with the Rasia et al. pipeline) and/or using a larger
sample of Gadget-2 clusters.

4.4. Average Temperatures
Average cluster temperature, ⟨T ⟩, is another important ICM

diagnostic and a key observable for cosmological application.
Since the ICM is not isothermal within a cluster, the defi-
nition of ⟨T ⟩ is not unique. The differences among various
definitions should be calibrated and taken into account. Fig-
ure 6 compares different ⟨T ⟩ obtained from the mockChandra
analysis, Tspec, T [0.5r500c]spec , and Tmg, as well as those measured
directly from the 3D properties of gas in simulations, T SIMew
and T SIMmg , for all clusters at z = 0 and 0.6 (see § 3.2). The gas
with T < 0.086 keV (106 K) is excluded from all calculations
of average temperatures, since it does not contribute to the X-
ray flux. Note also that detectable small clumps are excluded
from the mock Chandra analysis and hence do not affect the
determination of ⟨T ⟩. Average ratios of different temperature
definitions are summarized in Table 3.
The best agreement is between the true and X-ray derived

gas mass-weighted temperatures. Other definitions show a
constant offset relative to T SIMmg with some scatter around the
mean. For the relaxed clusters at z = 0, we find T SIMew : Tspec :
Tmg : T SIMmg = 1.19 : 1.13 : 0.99 : 1. The ratios are slightly
different for the non-relaxed clusters, T SIMew : Tspec : Tmg :
T SIMmg = 0.99 : 1.07 : 0.96 : 1. The Tspec is higher than Tmg
because the former is dominated by the inner, hotter region

Nagai et al. (2007)

• X-ray mass derived w/
   hydrostatic equilibrium
   is known to be biased
   low by ~10−40%

• need independent mass
   estimates to quantify 
   the X-ray mass bias



Weak lensing

• purely gravitational effect

• direct measurements of
   total mass, including 
   dark matter!

S. Colombi



Scatter and bias in lensing mass

• scatter
   statistical error − shot noise, LSS
   halo triaxiality

• bias
   profile mismatch
   substructure? (not in this talk)
   photo-z, dilution, ... (not in this talk)



Halo triaxiality

http://www.mpa-garching.mpg.de/galform/millennium/

• ΛCDM model predicts
   highly non-spherical 
   halo shape 

• typical major-to-minor
   axis ratio 2:1 

http://www.mpa-garching.mpg.de/galform/millennium/


Observational evidence
Combined strong and weak lensing analysis of 28 clusters 15

Figure 11. The two-dimensional weak lensing shear maps obtained from stacking analysis of 25 clusters. The sticks shows observed
directions and strengths of weak lensing shear distortion. Colour contours are the surface density map reconstructed from the shear map
using the standard inversion technique (Kaiser & Squires 1993). Both the shear and density maps are smoothed for illustrative purpose.
Left: The result when the position angle of each cluster is aligned to the North-South axis before stacking, by using the position angle
measured in strong lens modelling. The resulting stacked density distribution is clearly elongated along the North-South direction. Right:

The result without any alignment of the position angle when stacking. The resulting density distribution is nearly circular symmetric in
this case.

we fix the mass centre to the assumed centre (the position
of the brightest galaxy in strong lensing region), because
strong lensing available for our cluster sample allows a reli-
able identification of the mass centre for each cluster. Thus
we fit the 2D shear map with four parameters (Mvir, cvir, e,
θe), employing a Markov Chain Monte Carlo technique.

In Figure 12, we show the posterior likelihood distribu-
tion of the mean ellipticity ⟨e⟩ from the 2D stacking analysis
of all the 25 clusters. When the position angles are aligned,
the resulting density distribution is indeed quite elliptical
with the mean ellipticity of ⟨e⟩ = 0.47 ± 0.06. We find that
the elliptical NFW model improve fitting by ∆χ2 = 26.9
compared with the case e = 0, which indicates that the
detection of the elliptical mass distribution is significant
at the 5σ level. The measured mean ellipticity is consis-
tent with the average ellipticity from strong lens modelling
⟨e⟩ = 0.38 ± 0.24, although the latter involves large scat-
ter. The best-fit position angle of θe = 9.1+3.9

−4.1 deg slightly
deviates from the expected position angle of θe = 0, but
they are consistent with each other within 2σ (∆χ2 < 4). In
contrast, if the position angles are not aligned in stacking
shear signals, the resulting constraint on the mean elliptic-
ity is ⟨e⟩ < 0.19, i.e., it is fully consistent with the circular
symmetric mass distribution e = 0 within 1σ.

We compare this result with the theoretical prediction
in the ΛCDM model. For this purpose we employ a triaxial
model of Jing & Suto (2002). Assuming that the halo orien-
tation is random, we compute the probability distribution
of the ellipticity by projecting the triaxial halo along arbi-
trary directions (Oguri et al. 2003; Oguri & Keeton 2004).
In this analysis we fix the mass and redshift of the halo to
Mvir = 4.6 × 1014h−1M⊙ and z = 0.469, which are mean

Table 6. Summary of the two-dimensional stacking analysis

Sample ⟨e⟩ ⟨θe⟩
(deg)

all 0.47+0.06
−0.06 9.1+3.9

−4.1

θE-1 0.29+0.13
−0.18 14.1+13.9

−18.8

θE-2 0.70+0.05
−0.09 13.0+4.4

−4.3

θE-3 0.52+0.10
−0.14 6.7+12.2

−9.2

Mvir-1 0.58+0.04
−0.09 5.2+4.4

−4.5

Mvir-2 0.28+0.12
−0.14 9.7+11.3

−17.6

Mvir-3 0.60+0.09
−0.11 16.7+7.0

−8.7

mass and redshift of the 25 clusters. We find that the mean
ellipticity predicted by this model is ⟨e⟩ = 0.44, in excellent
agreement with the measured ellipticity. The analysis pre-
sented in Appendix A indicates that the effect of the lensing
bias on the mean ellipticity is small, with a possible shift of
the mean ellipticity of ! 0.05 at most, and hence it does not
affect our conclusion. Our result is also in good agreement
with the previous lensing measurement of the ellipticity by
Oguri et al. (2010) in which 2D shear maps of individual
clusters are fitted with the elliptical NFW profile, rather
than examining the stacked shear map.

We check the sensitivity of our ellipticity result on the
size of the fitting region, as one possible concern is that
infalling matter associated with the filamentary structure
outside clusters might boost the mean ellipticity. Figure 13
shows how the constraint on the mean ellipticity changes by
making the size of the fitting region smaller from our fiducial

c⃝ RAS, MNRAS 000, 1–22

Oguri et al. (2012)• direct measurements of
   halo shapes w/ WL

• non-sphericity detected
   at ≳ 5σ 
   〈e2D〉= 0.46±0.04 
       (Oguri et al. 2010 w/ LoCuSS)

   〈e2D〉= 0.47±0.06 
     (Oguri et al. 2012 w/ SGAS)

• e2D quite consistent with 
   ΛCDM predictions!



Projection effect

triaxial
cluster

Oguri, Takada, Umetsu, Broadhurst ApJ 632(2005)841
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FIG. 1.— Convergence profiles of the triaxial halo with the virial mass
Mvir = 1015h−1M⊙, the concentration parameter ce = 1.15, and the triaxial
axis ratios of a/c = 0.4 and b/c = 0.7. The halo is placed at zl = 0.3, and we
assume the source redshift of zs = 1.0. We consider the projection along each
of the three principal axes: from upper to lower the dashed lines show profiles
projected along z, y, and x (see eq. [1]), respectively. The convergence profile
of the corresponding spherical NFW halo is also plotted by the solid line
for comparison (see text for details). The vertical arrow indicates the virial
radius.

physical scale of 129h−1kpc for A1689 (redshift z = 0.18).

2. A SIMPLE ESTIMATION OF THE HALO TRIAXIALITY EFFECT
ON LENSING MEASUREMENTS

Before going to the analysis of A1689, we make a sim-
ple test to demonstrate how important the halo triaxiality is
in constraining mass profiles from a two-dimensional lensing
measurement. The analysis is somewhat similar to that done
by Clowe et al. (2004) who used high-resolutionN-body sim-
ulations of massive clusters. Here we instead use an analytic
model of aspherical dark halos.
We consider a triaxial halo with the virial mass Mvir =

1015h−1M⊙
7, placed at zl = 0.3, and adopt the model mass

profile given in JS02:

ρ(R) = δceρcrit(z)
(R/R0)(1+R/R0)2

, (1)

R2 ≡ c2
(

x2

a2
+
y2

b2
+
z2

c2

)

(a≤ b≤ c). (2)

We adopt typical model parameters for a halo of 1015h−1M⊙:
the triaxial axis ratios are a/c = 0.4 and b/c = 0.7, and
the concentration parameter ce ≡ Re/R0, where Re is de-
fined such that the mean density enclosed within the ellip-
soid of the major axis radius Re is ∆eΩ(z)ρcrit(z) with ∆e =
5∆vir

(

c2/ab
)0.75, is chosen to be ce = 1.15. We have checked

that the spherically-averaged radial mass profile of the triax-
ial halo is quite similar to the spherical NFW profile that is
specified by the virial radius rvir = Re/0.45, as proposed in
JS02 (see Figure 14 in JS02), and the concentration parame-
ter cvir = 48. However, it is non-trivial for these triaxial and
7 The virial mass is defined by spherically averaging the halo mass dis-

tribution (the triaxial mass profile for our case) around the halo center and
then by finding the sphere inside which the mean overdensity reaches ∆vir
predicted in the top-hat spherical collapse model.
8 Since the overdensity in the triaxial model, ∆e, is at least 5 times larger

FIG. 2.— Constraint contours in the virial mass and halo concentration
parameter space, obtained by fitting the mock data of triaxial halos to the
spherical NFW halo model. The contours show 68%, 95%, 99.7% confidence
limits (corresponding to∆χ2 = 2.3,6.17 and 11.8, respectively). From left to
right, the constraint contours from the convergence profiles of the triaxial halo
projected along the principal axes x, y, and z (as in Figure 1), respectively,
are shown. For comparison, the square symbol shows the best-fitting model
for the convergence profile obtained by projecting the a priori spherically-
averaged mass profile of the input triaxial halo.

spherical models whether to yield similar lensing maps as a
result of the line-of-sight projection9. To make this clear, Fig-
ure 1 compares the circularly-averaged convergence profiles
for the spherical and triaxial halos. For the triaxial halo, we
consider the projection along each of the three principal axes.
It is clear that the surface mass density of the triaxial halo
depends strongly on the projection direction. Therefore it is
quite likely that adopting a spherical halo model causes a bias
in estimating the mass and profile parameters for an individual
cluster in reality.
To see this more clearly, we perform the following test.

First, we generate an “observed” surface mass density pro-
file: We consider 20 bins logarithmically spacing over the
range r = [10−2,1]h−1Mpc, and generate the convergence pro-
file κ(r), where the mean value for each bin is taken from the
triaxial halo model and the Gaussian random error of stan-
dard deviation ∆(log10κ) = 0.1 is added to each bin. Then,
assuming the spherical NFW density profile, we constrain the
virial mass (Mvir) and halo concentration parameter (cvir) by
fitting the model predictions to the “observed” profile. The
constraint contours in theMvir −cvir plane are shown in Figure
2, demonstrating that the best-fit parameters depend strongly
on the projection direction. For example, the convergence
profile projected along the major (minor) axis yields a sig-
nificant overestimation (underestimation) by 20−30% in both
the mass and concentration parameters. It should be noted
that the bias direction is orthogonal to the degeneracy direc-
tion of the error ellipse, implying the systematics is very im-

than the spherical overdensity∆vir, the concentration parameter in the triaxial
model tends to be smaller than those in the spherical model (approximately
given as ce ≈ 0.45cvir). See JS02 for details.
9 The lensing convergence field κ(r) is given in terms of the surface mass

density Σ(r) as κ(r) ≡ Σ(r)/Σcr , where Σcr is the lensing critical density
specified for a background cosmology and lens and source redshifts (see
Schneider et al. 1992).

radial
profile

• projected mass profile depends sensitively 
   on the projection direction



Projection effect

triaxial
cluster

Oguri, Takada, Umetsu, Broadhurst ApJ 632(2005)841

• lensing-derived mass and concentration are
   significantly affected by the cluster orientation
   → ~20-30% scatter in lensing mass

2 Oguri et al.

FIG. 1.— Convergence profiles of the triaxial halo with the virial mass
Mvir = 1015h−1M⊙, the concentration parameter ce = 1.15, and the triaxial
axis ratios of a/c = 0.4 and b/c = 0.7. The halo is placed at zl = 0.3, and we
assume the source redshift of zs = 1.0. We consider the projection along each
of the three principal axes: from upper to lower the dashed lines show profiles
projected along z, y, and x (see eq. [1]), respectively. The convergence profile
of the corresponding spherical NFW halo is also plotted by the solid line
for comparison (see text for details). The vertical arrow indicates the virial
radius.
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JS02 (see Figure 14 in JS02), and the concentration parame-
ter cvir = 48. However, it is non-trivial for these triaxial and
7 The virial mass is defined by spherically averaging the halo mass dis-

tribution (the triaxial mass profile for our case) around the halo center and
then by finding the sphere inside which the mean overdensity reaches ∆vir
predicted in the top-hat spherical collapse model.
8 Since the overdensity in the triaxial model, ∆e, is at least 5 times larger

FIG. 2.— Constraint contours in the virial mass and halo concentration
parameter space, obtained by fitting the mock data of triaxial halos to the
spherical NFW halo model. The contours show 68%, 95%, 99.7% confidence
limits (corresponding to∆χ2 = 2.3,6.17 and 11.8, respectively). From left to
right, the constraint contours from the convergence profiles of the triaxial halo
projected along the principal axes x, y, and z (as in Figure 1), respectively,
are shown. For comparison, the square symbol shows the best-fitting model
for the convergence profile obtained by projecting the a priori spherically-
averaged mass profile of the input triaxial halo.

spherical models whether to yield similar lensing maps as a
result of the line-of-sight projection9. To make this clear, Fig-
ure 1 compares the circularly-averaged convergence profiles
for the spherical and triaxial halos. For the triaxial halo, we
consider the projection along each of the three principal axes.
It is clear that the surface mass density of the triaxial halo
depends strongly on the projection direction. Therefore it is
quite likely that adopting a spherical halo model causes a bias
in estimating the mass and profile parameters for an individual
cluster in reality.
To see this more clearly, we perform the following test.

First, we generate an “observed” surface mass density pro-
file: We consider 20 bins logarithmically spacing over the
range r = [10−2,1]h−1Mpc, and generate the convergence pro-
file κ(r), where the mean value for each bin is taken from the
triaxial halo model and the Gaussian random error of stan-
dard deviation ∆(log10κ) = 0.1 is added to each bin. Then,
assuming the spherical NFW density profile, we constrain the
virial mass (Mvir) and halo concentration parameter (cvir) by
fitting the model predictions to the “observed” profile. The
constraint contours in theMvir −cvir plane are shown in Figure
2, demonstrating that the best-fit parameters depend strongly
on the projection direction. For example, the convergence
profile projected along the major (minor) axis yields a sig-
nificant overestimation (underestimation) by 20−30% in both
the mass and concentration parameters. It should be noted
that the bias direction is orthogonal to the degeneracy direc-
tion of the error ellipse, implying the systematics is very im-

than the spherical overdensity∆vir, the concentration parameter in the triaxial
model tends to be smaller than those in the spherical model (approximately
given as ce ≈ 0.45cvir). See JS02 for details.
9 The lensing convergence field κ(r) is given in terms of the surface mass

density Σ(r) as κ(r) ≡ Σ(r)/Σcr , where Σcr is the lensing critical density
specified for a background cosmology and lens and source redshifts (see
Schneider et al. 1992).
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Figure 6. The stacked tangential shear profile obtained by com-
bining the 25 clusters. The average differential surface density
⟨∆Σ+(r)⟩ (see equation 27) is plotted as a function of the phys-
ical radius r. Grey points indicate stacked tangential shear mea-
surements from weak lensing that are not used for fitting. The
upper left point with a horizontal error-bar is the constraint from
the average Einstein radius. The solid line with shading is the
best-fit NFW model with 1σ error range. The lower panel plots
the stacked profile of the 45◦ rotated component, ⟨∆Σ×(r)⟩.

been successful for constraining mean dark matter distri-
butions of cluster samples (e.g., Mandelbaum et al. 2006b;
Johnston et al. 2007; Leauthaud et al. 2010; Okabe et al.
2010). Here we conduct stacking analysis of the tan-
gential shear profile for our lensing sample for study-
ing the mass-concentration relation from another view-
point. Note that the off-centreing effect, which has been
known to be one of the most significant systematic
errors in stacked lensing analysis (e.g., Johnston et al.
2007; Mandelbaum, Seljak, & Hirata 2008; Oguri & Takada
2011), should be negligible for our analysis, because of the
detection of weak lensing signals for individual clusters and
the presence of giant arcs which assure that selected cen-
tres (positions of the brightest galaxies in the strong lensing
region) indeed correspond to that of the mass distribution.

We perform stacking in the physical length scale. Specif-
ically, we compute the differential surface density ∆Σ+(r)
which is define by

∆Σ+(r) ≡ Σcrg+(θ = r/Dol), (27)

where Σcr is the critical surface mass density for lens-
ing. We stack ∆Σ+(r) for different clusters to obtain the
average differential surface density. We do not include
SDSSJ1226+2149 and SDSSJ1226+2152 in our stacking
analysis, because these fields clearly have complicated mass
distributions with two strong lensing cores separated by only
∼ 3′. Furthermore, we exclude SDSSJ1110+6459 as well be-
cause the two-dimensional weak lensing map suggests the
presence of a very complicated mass distribution around the
system. We use the remaining 25 clusters for our stacked
lensing analysis.

It should be noted that the reduced shear g+ has a non-

Table 5. Summary of stacked tangential shear analysis

Sample N ⟨z⟩ ⟨θE⟩ ⟨Mvir⟩ ⟨cvir⟩
(arcsec) (1014h−1M⊙)

all 25 0.469 14.4+10.6
−7.0 4.57+0.33

−0.31 5.75+0.70
−0.57

θE-1 4 0.379 22.8+4.3
−2.8 6.03+0.74

−0.72 7.94+1.28
−1.02

θE-2 5 0.416 13.0+2.4
−2.8 3.13+0.50

−0.50 10.23+2.65
−1.82

θE-3 7 0.471 8.3+2.6
−2.4 3.51+0.52

−0.52 7.08+1.53
−1.12

Mvir-1 5 0.480 17.1+12.9
−6.4 9.55+1.17

−1.04 4.90+0.79
−0.73

Mvir-2 10 0.472 14.7+10.2
−5.7 5.62+0.61

−0.55 5.37+0.87
−0.75

Mvir-3 10 0.460 12.6+9.3
−7.8 1.97+0.32

−0.29 10.59+4.54
−2.83

linear dependence on the mass profile. In fact, the reduced
shear is defined by g+ ≡ γ+/(1 − κ), where γ+ and κ are
tangential shear and convergence. Thus, the quantity defined
by equation (27) still depends slightly on the source redshift
via the factor 1/(1 − κ), particularly near the halo centre.
Thus, in comparison with the NFW predictions, we assume
the source redshift of zs = 1.1, which is the typical effective
source redshift for our weak lensing analysis (see Table 3).
Also the non-linear dependence makes it somewhat difficult
to interpret the average profile, and hence our stacked tan-
gential profile measurement near the centre should be taken
with caution.

It is known that the matter fluctuations along the line-
of-sight contributes to the total error budget (e.g., Hoekstra
2003; Hoekstra et al. 2011; Dodelson 2004; Gruen et al.
2011). While we have ignored this effect for the analysis of
individual clusters presented in Section 4, here we take into
account the error from the large scale structure in fitting
the stacked tangential shear profile by including the full co-
variance between different radial bins (see Oguri & Takada
2011; Umetsu et al. 2011b, for the calculation of the covari-
ance matrix). We, however, comment that the error of the
large scale structure is subdominant in our analysis, because
of the relatively small number density of background galax-
ies after the colour cut (see also Oguri et al. 2010).

In addition to weak lensing, we stack strong lensing
constraints simply by averaging the Einstein radii for the
fixed source redshift zs = 2. This constraint is combined
with the stacked tangential shear profile from weak lens-
ing to obtain constraints on the mass and concentration
parameter for the stacked profile. Note that the Einstein
radius is related with the reduced shear as g+(θE) = 1.
Given the uncertainty from the non-linearity of the reduced
shear and the the possible bias coming from the uncer-
tainty of the outer mass profile (Oguri & Hamana 2011;
Becker & Kravtsov 2011), we restrict tangential shear fit-
ting in the range 0.158h−1Mpc < r < 3.16h−1Mpc. However
we note that our results are not largely changed even if we
conduct fitting in the whole radius range.

Figure 6 shows the stacking result for all the 25 clusters.
The mean cluster redshift for this sample is ⟨z⟩ = 0.469.
The total signal-to-noise ratio in the whole radius range
of 0.063h−1Mpc < r < 5.01h−1Mpc is S/N = 32. We
find that stacked tangential shear profile from weak lens-
ing is fitted well by the NFW profile over a wide range
in radius. The average Einstein radius from strong lens-
ing (⟨θE⟩ = 14.′′4+10.6

−7.0 ) is slightly larger than the best-
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Fig. 3.— Stacked tangential shear profile of all 50 clusters in units of projected mass density, where different cluster and background galaxy
redshifts galaxies are weighted by the lensing kernel (Mandelbaum et al. 2006; Okabe et al. 2010; Oguri & Takada 2011; Umetsu et al.
2011). The projected radius is computed from the weighted mean cluster redshift (zcluster ≃ 0.23). The solid, dashed, dotted and dashed-
dotted curves are the best-fit Navarro-Frenk-White (NFW), singular isothermal (SIS), generalized NFW (gNFW) and Einasto profiles,
respectively. The lower panel shows the result of the 45◦ test for systematic errors. Right – Stacked weak-lensing constraints on the mass
and concentration of a complete volume-limited sample of 50 galaxy clusters at ⟨z⟩ = 0.23. The white cross denotes the best-fit parameters
and the contours show the 68.3%, 95.4%, and 99.7% confidence levels. Note that the predicted relations have all been converted to be
consistent with our analysis.

Stacking procedure: radial bins – We construct synthetic
weak shear catalogs based on analytic NFW halos that
match the mass-concentration relation predicted from
numerical simulations. These catalogs match the ob-
served number density and field of view of our Subaru
data. We draw 300 samples of 50 clusters from the pre-
dicted cluster distribution, and stack the respective shear
profiles in both physical length units (as in Section 3.1)
and length units scaled to r200 of each halo. We do not
detect any bias in the measured mean concentration of
the stacked clusters, obtaining ⟨c/ctruth⟩ = 1.02±0.07 for
stacking in physical length units, and find ⟨c/ctruth⟩ =
1.08 ± 0.07 for re-scaled length units. In both cases we
obtain ⟨M/Mtruth⟩ = 0.96 ± 0.06; the uncertainties are
the standard deviation on the 300 samples of 50 clus-
ters. The non-detection of a systematic error arising from
stacking in physical units is consistent with Ok10’s result
that their mass-concentration relations from individual
and stacked clusters (using physical length units) are
self-consistent. We also note that stacking in re-scaled
length units weights the contribution of each cluster to
each bin in a nonlinear and model-dependent manner:

w ∝ θ∆θ ∝ r2200 ∝ M2/3
200 .

Real clusters are aspherical, embedded in the large-
scale-structure, and contain baryons. As numerical hy-
drodynamical simulations become more realistic, robust
tests based on simulated clusters should therefore become
possible. We conduct a preliminary test using clusters
extracted from the new “Cosmo-OWLS” simulation, that
implements the AGNmodel described in McCarthy et al.

(2011) in a 400 h−1Mpc box, with weak-lensing catalogs
constructed following Bahé et al. (2012). The results are
consistent with the analytic NFW tests – i.e. we do not
detect any systematic error on the measurement of con-
centration based on stacking in physical length units.

Stacking procedure: centering – We also checked whether
the results are affected by adopting the BCG as the cen-
ter of each cluster, by adding an off-centering parameter
σRoff

to the models following Johnston et al. (2007). The
best-fit Mvir and cvir are unchanged, and we obtain an
upper limit of σRoff

< 29 h−1kpc.

3.3. Comparison with Okabe et al. (2010)

We fit an NFW model to Ok10’s stacked red+blue cat-
alog and our own stacked red galaxy catalog for the 21
clusters in common between the two studies, finding that
our mean masses and concentrations are ∼ 14 − 20%
and ∼ 15 − 17% greater than theirs (Table 2). The
main differences between Ok10 and our analysis relate
to color-selection of background galaxies, and their shape
measurement methods (§2). We attribute the differences
between our respective mass measurements mainly to a
combination of (1) contamination of Ok10’s blue galaxy
sample at large cluster-centric radii and (2) systemat-
ics in Ok10’s shape measurement methods. We attribute
the differences between the respective concentration mea-
surements mainly to contamination of Ok10’s red galaxy
catalog – their less conservative red color cut (⟨∆C⟩ =
0.33) leads to an overall ∼ 5% contamination by galaxies
that preferentially lie at small cluster-centric radii (see
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by the c–M degeneracy discussed in Section 5.4.1. On
the basis of this comparison, we estimate the systematic
uncertainty in the overall mass calibration to be of the
order of ±8%.

6. CLASH STACKED LENSING ANALYSIS

Stacking an ensemble of clusters helps average out the
projection e↵ects of cluster asphericity and substructure,
as well as the cosmic noise from projected uncorrelated
LSS, inherent in lensing measurements. The statistical
precision can be greatly improved by stacking together
a large number of clusters, especially on small angular
scales (Okabe et al. 2010), allowing a tighter comparison
of the averaged lensing profile with theoretical models.
Here our stacked lensing analysis will focus on the

CLASH X-ray-selected subsample of Postman et al.
(2012), which comprises a population of high-mass X-ray
regular clusters. The four high-magnification clusters are
thus excluded from this part of the analysis.
In Section 6.1 we present a stacked tangential-

distortion (shear-only) analysis of the 16 X-ray regular
clusters, and examine the form of their underlying halo
mass profile using the ensemble-averaged hh�⌃+ii pro-
file. In Section 6.2 we derive the ensemble-averaged total
mass profile hh⌃ii from our cluster mass-profile dataset
(Figure 3), for comparison with theoretical predictions
taking into account both one- and two-halo term contri-
butions.

6.1. CLASH Stacked Shear-only Analysis

6.1.1. Stacking the Weak Shear Signal

The azimuthally-averaged tangential distortion is a
measure of the radially-modulated surface mass density
and is insensitive to sheet-like mass overdensities, which
resemble the projected two-halo term within a couple of
virial radii (Oguri & Hamana 2011). Hence, the stacked
tangential-distortion signal around a large sample of clus-
ters is a sensitive probe of the cluster-only (one-halo
term) mass distribution.
In Figure 5 we show the stacked tangential-shear pro-

file hh�⌃+ii derived for our sample where individual clus-
ters and background galaxies are weighted by the shear-
sensitivity kernel (trW+ in Section 3.4.1). The individ-
ual profiles are co-added in physical length units across
the range R = [Rmin, Rmax] = [200, 3500] kpch�1, in 11
log-spaced bins. Here, the radial limits [Rmin, Rmax] of
our stacking analysis represent approximately the respec-
tive median values of the radial boundaries [✓min, ✓max]
covered by the data for our clusters at 0.19 <⇠ zl <⇠ 0.69.
For individual clusters, we impose their respective radial
cuts [✓min, ✓max] on the background samples, to be consis-
tent with our individual cluster analysis. For our sample,
we find a sensitivity-weighted average redshift of hhzlii =
0.345, in close agreement with the median redshift of
zl = 0.352. The e↵ective lensing sensitivity hh⌃�1

c ii
(Equation (22)) is 1/hh⌃�1

c ii ' 3.88⇥ 1015hM� Mpc�2.
We detect the stacked lensing signal at a total S/N

of ' 25 using the full covariance matrix C+ (Equation
(20)) to take into account intrinsic ellipticity and pro-
jected uncorrelated LSS noise, photo-z uncertainties in
the mean-depth calibration, and profile variations in indi-
vidual clusters. The 45�-rotated ⇥ component hh�⌃⇥ii
is consistent with a null signal within 2� at all radii, with

Fig. 5.— The average tangential-shear profile hh�⌃+ii (upper
panel, black squares) obtained from stacking the X-ray-selected
subsample of 16 clusters, shown in units of projected mass density.
The thick-solid (red), dashed (blue), dashed-dotted (magenta),
dotted (green), and thin-solid (orange) lines correspond to the best-
fit NFW, truncated-NFW (Baltz et al. 2009, BMO), Einasto, SIS,
and cored isothermal sphere profiles, respectively. The gray-shaded
area shows the composite halo mass-profile prediction (1�) derived
from a weighted average of individual NFW profiles based on the
joint shear+magnification analysis (Figure 3), in good agreement
with the stacked shear-only constraints (Figure 6). The lower panel
shows the 45�-rotated ⇥ component hh�⌃⇥ii, which is consistent
with a null signal well within 2� at all radii, indicating the relia-
bility of our distortion analysis. The right vertical axes represent
the corresponding shear components, �+ = hh⌃�1

c iihh�⌃+ii and
�⇥ = hh⌃�1

c iihh�⌃⇥ii, scaled to the mean depth of weak-lensing
observations.

a total S/N of ' 2.8, indicating that residual systematic
errors are at least an order of magnitude smaller than
the measured lensing signal.

6.1.2. Modeling the Stacked Weak Shear Signal

Here we quantify and characterize the ensemble-
averaged mass distribution of our cluster sample using
the stacked tangential-distortion signal. We examine the
following five models for the halo mass density profile,
⇢(r) = dM3D(< r)/dr/(4⇡r2), each described by Np pa-
rameters:

1. Singular isothermal sphere (SIS) model with Np =
1:

⇢SIS(r) =
�2
v

2⇡Gr2
(28)

with �v the one-dimensional isothermal velocity
dispersion.

2. Isothermal-� model with Np = 2 (Hattori et al.
1999):

⇢iso(r) =
Mc

2⇡r3c

3 + (r/rc)2

[1 + (r/rc)2]2
(29)

with Mc = M3D(< rc) the total mass enclosed
within the core radius rc. Note ⇢iso(r) / r�2 at
r � rc.

CLASH (Umetsu et al. 2014)
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Fig. 3.— Stacked tangential shear profile of all 50 clusters in units of projected mass density, where different cluster and background galaxy
redshifts galaxies are weighted by the lensing kernel (Mandelbaum et al. 2006; Okabe et al. 2010; Oguri & Takada 2011; Umetsu et al.
2011). The projected radius is computed from the weighted mean cluster redshift (zcluster ≃ 0.23). The solid, dashed, dotted and dashed-
dotted curves are the best-fit Navarro-Frenk-White (NFW), singular isothermal (SIS), generalized NFW (gNFW) and Einasto profiles,
respectively. The lower panel shows the result of the 45◦ test for systematic errors. Right – Stacked weak-lensing constraints on the mass
and concentration of a complete volume-limited sample of 50 galaxy clusters at ⟨z⟩ = 0.23. The white cross denotes the best-fit parameters
and the contours show the 68.3%, 95.4%, and 99.7% confidence levels. Note that the predicted relations have all been converted to be
consistent with our analysis.

Stacking procedure: radial bins – We construct synthetic
weak shear catalogs based on analytic NFW halos that
match the mass-concentration relation predicted from
numerical simulations. These catalogs match the ob-
served number density and field of view of our Subaru
data. We draw 300 samples of 50 clusters from the pre-
dicted cluster distribution, and stack the respective shear
profiles in both physical length units (as in Section 3.1)
and length units scaled to r200 of each halo. We do not
detect any bias in the measured mean concentration of
the stacked clusters, obtaining ⟨c/ctruth⟩ = 1.02±0.07 for
stacking in physical length units, and find ⟨c/ctruth⟩ =
1.08 ± 0.07 for re-scaled length units. In both cases we
obtain ⟨M/Mtruth⟩ = 0.96 ± 0.06; the uncertainties are
the standard deviation on the 300 samples of 50 clus-
ters. The non-detection of a systematic error arising from
stacking in physical units is consistent with Ok10’s result
that their mass-concentration relations from individual
and stacked clusters (using physical length units) are
self-consistent. We also note that stacking in re-scaled
length units weights the contribution of each cluster to
each bin in a nonlinear and model-dependent manner:

w ∝ θ∆θ ∝ r2200 ∝ M2/3
200 .

Real clusters are aspherical, embedded in the large-
scale-structure, and contain baryons. As numerical hy-
drodynamical simulations become more realistic, robust
tests based on simulated clusters should therefore become
possible. We conduct a preliminary test using clusters
extracted from the new “Cosmo-OWLS” simulation, that
implements the AGNmodel described in McCarthy et al.

(2011) in a 400 h−1Mpc box, with weak-lensing catalogs
constructed following Bahé et al. (2012). The results are
consistent with the analytic NFW tests – i.e. we do not
detect any systematic error on the measurement of con-
centration based on stacking in physical length units.

Stacking procedure: centering – We also checked whether
the results are affected by adopting the BCG as the cen-
ter of each cluster, by adding an off-centering parameter
σRoff

to the models following Johnston et al. (2007). The
best-fit Mvir and cvir are unchanged, and we obtain an
upper limit of σRoff

< 29 h−1kpc.

3.3. Comparison with Okabe et al. (2010)

We fit an NFW model to Ok10’s stacked red+blue cat-
alog and our own stacked red galaxy catalog for the 21
clusters in common between the two studies, finding that
our mean masses and concentrations are ∼ 14 − 20%
and ∼ 15 − 17% greater than theirs (Table 2). The
main differences between Ok10 and our analysis relate
to color-selection of background galaxies, and their shape
measurement methods (§2). We attribute the differences
between our respective mass measurements mainly to a
combination of (1) contamination of Ok10’s blue galaxy
sample at large cluster-centric radii and (2) systemat-
ics in Ok10’s shape measurement methods. We attribute
the differences between the respective concentration mea-
surements mainly to contamination of Ok10’s red galaxy
catalog – their less conservative red color cut (⟨∆C⟩ =
0.33) leads to an overall ∼ 5% contamination by galaxies
that preferentially lie at small cluster-centric radii (see

SGAS (Oguri et al. 2012)
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CLASH: The c-M relation 17

Figure 12. A c-M comparison in 2D. This figure is identical to Fig. 11, but shows the comparison between di↵erent c-M relations, based
on di↵erent halo subsets from M14 in 2D. In addition, we overlay again the c-M likelihood contours from Umetsu et al. (2014).

We configure X-MAS to reproduce the X-ray observa-
tions (Maughan et al. 2008; Allen et al. 2008; Ebeling
et al. 2007; Cavagnolo et al. 2008; Mantz et al. 2010)
according to which the CLASH clusters were selected.
Using this set of simulated X-ray images we apply the
very same selection criteria which were used to select the
CLASH X-ray selected clusters. For a more detailed de-
scription of these criteria and the selection process see
M14.
This CLASH-like, X-ray selected sample in 2D is the

one simulated sample which comes closest to the real
CLASH clusters, both with respect to the selection cri-
teria and the analysis method. The comparison between
the c-M relation of this sample and the observed CLASH
clusters shows indeed significant improvement over the
limiting case of the fully relaxed sample in the last sec-
tion. The qualitative agreement between the data points
and the X-ray selected c-M relation in Fig. 12 is quite
obvious. The median concentration ratio shows that the
observed CLASH concentrations are only 4% lower than
the ones from the X-ray selected simulation sample and
the p-value 0.38 indicates no strong tension between the
two samples (compare Table 9). Finally, we calculate
the ��2 value for the fits of the CLASH c-M relation

Table 9

Goodness-of-fit: Meneghetti et al. 2014

Sample hc
obs

/c
sim

i Q
2

Q
1

Q
3

�2 p-value

3D full 1.00± 0.18 1.03 0.86 1.15 9.5 0.85
3D relaxed 0.80± 0.16 0.84 0.68 0.93 29.4 0.01
2D full 1.03± 0.19 1.06 0.89 1.09 9.2 0.87
2D relaxed 0.86± 0.16 0.88 0.73 0.98 32.1 0.01
2D SL 0.91± 0.19 0.93 0.78 1.03 18.0 0.26
2D X-ray 0.94± 0.20 0.96 0.80 1.06 16.1 0.38

Note. — The column explanations are identical to Table 8.

from Sec. 5.1 and the X-ray selected c-M relation and
find that the two relations agree at the 90% confidence
level.

6.3. Individual CLASH Clusters in Our Simulated
Sample

As the final analysis in this work we now select close
matches to individual CLASH clusters out of our 2D
set of simulated halos. We do this in order to gather
additional confirmation that our specific way of select-
ing CLASH clusters from a numerical simulation is suf-
ficiently accurate to characterize the CLASH selection

CLASH (Merten et al. 2014)
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Figure 5. The mass-concentration relation obtained from com-
bined strong and weak lensing analysis. Filled triangles show our
results presented in this paper, whereas filled squares show re-
sults from literature; A1689, A370, CL0024, RXJ1347 (Umetsu
et al. 2011b), and A383 (Zitrin et al. 2011b). The black shaded
region indicates the predicted concentration parameters as a func-
tion of the halo mass with the lensing bias taken into account
(see Appendix A for details). The solid line is the best-fit mass-
concentration relation from fitting of our cluster sample (i.e., filled
triangles), with the 1σ range indicated by dotted lines.

Allen 2007; Buote et al. 2007; Ettori et al. 2010) analysis.
Our result suggests that the observed mass-concentration
relation is in reasonable agreement with the simulation re-
sults for very massive haloes of Mvir ∼ 1015h−1M⊙. The
agreement may be even better if we adopt recent results
of N-body simulations by Prada et al. (2011), who argued
that previous simulation work underestimated the mean
concentrations at high mass end (see also Appendix A).
In contrast, we find that observed concentrations are much
higher than theoretical expectations for less massive haloes
of Mvir ∼ 1014h−1M⊙, even if we take account of the mass
dependence of the lensing bias.

There are a few possible explanations for the excess
concentration for small mass clusters. Perhaps the most sig-
nificant effect is baryon cooling. The formation of the central
galaxy, and the accompanying adiabatic contraction of dark
matter distribution, enhances the core density of the clus-
ter and increases the concentration parameter value for the
total mass distribution. This effect is expected to be mass
dependent such that lower mass haloes are affected more
pronouncedly, simply because the fraction of the mass of
the central galaxy to the total mass is larger for smaller
halo masses. Indeed, simulations with radiative cooling and
star formation indicate that the concentration can be signifi-
cantly enhanced by baryon physics particularly for low-mass
haloes (e.g., Rudd, Zentner, & Kravtsov 2008; Mead et al.
2010). Thus baryon cooling appears to be able to explain
the observed strong mass dependence at least qualitatively,
although more quantitative estimates of this effect need to
be made using a large sample of simulated clusters with the
baryon physics included.

5 STACKING ANALYSIS

5.1 Stacked tangential shear profile

We can study the average properties of a given sample by
stacking lensing signals. This stacked lensing analysis has
been successful for constraining mean dark matter distri-
butions of cluster samples (e.g., Mandelbaum et al. 2006b;
Johnston et al. 2007; Leauthaud et al. 2010; Okabe et al.
2010). Here we conduct stacking analysis of the tangential
shear profile for our lensing sample for studying the mass-
concentration relation from another viewpoint. Note that
the off-centreing effect, which has been known to be one
of the most significant systematic errors in stacked lensing
analysis (e.g., Johnston et al. 2007; Mandelbaum, Seljak, &
Hirata 2008; Oguri & Takada 2011), should be negligible for
our analysis, because of the detection of weak lensing signals
for individual clusters and the presence of giant arcs which
assure that selected centres (positions of the brightest galax-
ies in the strong lensing region) indeed correspond to that
of the mass distribution.

We perform stacking in the physical length scale. Specif-
ically, we compute the differential surface density ∆Σ+(r)
which is define by

∆Σ+(r) ≡ Σcrg+(θ = r/Dol), (27)

where Σcr is the critical surface mass density for lens-
ing. We stack ∆Σ+(r) for different clusters to obtain the
average differential surface density. We do not include
SDSSJ1226+2149 and SDSSJ1226+2152 in our stacking
analysis, because these fields clearly have complicated mass
distributions with two strong lensing cores separated by only
∼ 3′. Furthermore, we exclude SDSSJ1110+6459 as well be-
cause the two-dimensional weak lensing map suggests the
presence of a very complicated mass distribution around the
system. We use the remaining 25 clusters for our stacked
lensing analysis.

It should be noted that the reduced shear g+ has a non-
linear dependence on the mass profile. In fact, the reduced
shear is defined by g+ ≡ γ+/(1 − κ), where γ+ and κ are
tangential shear and convergence. Thus, the quantity defined
by equation (27) still depends slightly on the source redshift
via the factor 1/(1 − κ), particularly near the halo centre.
Thus, in comparison with the NFW predictions, we assume
the source redshift of zs = 1.1, which is the typical effective
source redshift for our weak lensing analysis (see Table 3).
Also the non-linear dependence makes it somewhat difficult
to interpret the average profile, and hence our stacked tan-
gential profile measurement near the centre should be taken
with caution.

It is known that the matter fluctuations along the line-
of-sight contributes to the total error budget (e.g., Hoek-
stra 2003; Hoekstra et al. 2011; Dodelson 2004; Gruen et
al. 2011). While we have ignored this effect for the anal-
ysis of individual clusters presented in Section 4, here we
take into account the error from the large scale structure in
fitting the stacked tangential shear profile by including the
full covariance between different radial bins (see Oguri &
Takada 2011; Umetsu et al. 2011b, for the calculation of the
covariance matrix). We, however, comment that the error of
the large scale structure is subdominant in our analysis, be-
cause of the relatively small number density of background
galaxies after the colour cut (see also Oguri et al. 2010).
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• detailed lensing profiles from ray-tracing in 
   N-body simulations 
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Detailed cluster lensing profiles 5

Figure 2. Example of fitting results for the mass bin MFOF = 1014h−1M⊙ and the redshift bin z = 0.4. Left panels show convergence
profiles, whereas right panels display tangential shear profiles. Curves are best-fit results for three different main halo models, the NFW
profile (dashed), the TJ profile (dash-dotted), and the BMO profile (solid). The average profiles from ray-tracing simulations are indicated
by filled squares. Top: Results when only 1-halo term (i.e., no 2-halo term) is considered. The result for the BMO is similar to the NFW
result, and therefore not shown. Middle: Results for the BMO profile. Contributions from 1-halo and 2-halo terms are shown by dotted
lines. Bottom: Results for all the 3 profiles are compared.

to very small radii of θ/θvir ∼ 0.05, whereas the tangential
shear profiles show large deviations already at θ/θvir ∼ 0.1.
One reason for this is that shear signals are non-local. Since
the tangential shear signal at certain radius reflects all the
mass distributions at smaller radii, numerical effects appear
at larger radii in the tangential shear profiles than in the
convergence profiles.

Figure 3 show residuals of the convergence profile, i.e.,
the fractional difference between profiles in simulations and
best-fit analytic models, averaged over all redshift and mass
bins. We find that the BMO profile can fit the convergence
profiles in simulations quite well (< 5%) for a wide range of
radii from the core of main haloes to more than 10 times the

virial radii. We find the NFW profile generally overpredicts
the convergence profile by ∼ 20− 30% at θ/θvir ∼ 2. On the
other hand, the TJ profile grossly underpredicts the conver-
gence profile at θ/θvir ∼ 1. Thus we confirm the result shown
in Figure 2 that the BMO profile can best describe conver-
gence profiles in ray-tracing simulations. Again, we check
residuals for the case that we include only 1-halo term in
the analytic model, and find that the NFW profile can fit
the convergence profiles quite well out to θ/θvir ∼ 1, but be-
gins to underpredicts the profile quickly beyond the radius.

c⃝ RAS, MNRAS 000, 1–11
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Figure 1. Bets-fit values of the dimensionless truncation radius
τv (eq. [8]) in the BMO profile, for different redshift (upper) and
mass (lower) bins. Filled squares plot the case when the concen-
tration parameter is computed from equation (5), whereas open
circles are the case when the concentration parameter is fitted
simultaneously. Dotted lines connect median values of τv in dif-
ferent redshift and mass bins. The median values of all bins are
τv = 3.0 for the fixed concentration parameter, and τv = 2.6 for
the fitted concentration parameter.

any off-centring effect which essentially smears out central
profiles (see Oguri & Takada 2011). The average profiles are
computed as a function of θ/θvir, where θvir is the virial ra-
dius computed assuming Mvir = MFOF. We derive profiles
in the radius range of 10−2 < θ/θvir < 50, with the bin size
of log(θ/θvir) = 0.1.

3.2 Fitting method

We fit the average convergence profile in each bin using the
models described in Sec. 2. We basically fit the average pro-
files in the simulations with the sum of the 1-halo and 2-halo
components, κ(θ) = κ1h(θ) + κ2h(θ), with three different
models of the 1-halo components as described in Sec. 2.2.
The standard χ2 method is employed for fitting, with the
error of convergence in each radial bin derived from the scat-
ter in the simulations. While the average profiles are derived
for given ranges of MFOF, it is not clear whether MFOF co-
incides with the virial mass Mvir used in the analytic mod-
els. In fact, previous work using N-body simulations has

found that there are systematic bias and considerable scat-
ter between MFOF and Mvir (e.g., White 2001; Tinker et al.
2008). Therefore, we perform fitting with leaving the virial
mass Mvir as a free parameter to take account of such sys-
tematic effect. Unless otherwise stated, we regard the con-
centration parameter cvir as a free parameter, although our
main conclusions are unchanged even if we fix the concen-
tration parameter to the value obtained from equation (5).
Thus there are 2 fitting parameters (Mvir, cvir) for the NFW
and TJ profiles, and 3 fitting parameters (Mvir, cvir, τv) for
the BMO profile.

It has been known that very central density profiles of
dark haloes in N-body simulations are not reliable because
of several numerical effects such as the two-body relaxation
and the finite time step size. Based on the detailed analy-
sis of Fukushige & Makino (2001), we estimate that density
profiles are reliable down to ∼ 0.08rvir for our N-body simu-
lations in which N ∼ 104 particles are included in each halo
analysed in the present paper. Indeed, our analysis results
also indicate that convergence and tangential shear profiles
near the very centre (θ/θvir ∼ 0.01) tend to be significantly
smaller than our analytic model calculations (see below).
Thus, in all mass and redshift bins fitting is performed in
the radial bins θ/θvir ! 0.079 to make sure that our fitting
results are not affected by numerical artifacts.

3.3 Result

First we check the best-fit values of the truncation radius
τv (eq. [8]) in the BMO profile. Figure 1 show the best-fit
values for different redshift and mass bins. We find the best-
fit values to be ∼ 2−3, showing no strong dependence on the
mass and redshift. We consider two cases, the case that the
concentration parameter is fixed to the value computed in
equation (5) and the case that the concentration parameter
is also fitted to the data. We find that the results of both
cases agree reasonably well with each other, which implies
that the best-fit values of τv is not sensitive to how the
concentration parameter is treated. The median values are
τv = 3.0 when the concentration parameter is fixed, and
τv = 2.6 when the concentration parameter is fitted to the
data.

To illustrate how well the different main halo models
can reproduce the average profiles in ray-tracing simula-
tions, in Figure 2 we show the comparisons of convergence
and tangential shear profiles for a representative case. As
clearly shown in the Figure, the BMO profile reproduce pro-
files in the ray-tracing simulations quite successfully for a
wide range in radii. In contrast, the NFW and TJ profiles
are less successful in fitting the profile around the virial ra-
dius, where the transition between 1-halo and 2-halo terms
occurs. The NFW profile tends to overpredict the conver-
gence profile, whereas the TJ profile clearly underpredicts
the profile. For comparison, we fit the convergence profile
using the 1-halo term only for the NFW and TJ profile. We
find that the NFW profile can fit the total average profile
quite well out to θ/θvir ∼ 2, beyond which the NFW profile
clearly underpredicts the profile. The situation is worse for
the TJ profile for which we can see the significant discrep-
ancy already at θ/θvir ∼ 1.

The Figure also indicates that the analytic and simu-
lated convergence profiles agree well with each other down
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2007). This idea has been applied to real data to
demonstrate that massive clusters can indeed be identi-
fied (Miyazaki et al. 2002, 2007; Gavazzi & Soucail 2007;
Schirmer et al. 2007; Hamana et al. 2009; Kubo et al. 2009).
Such shear-selected cluster catalogs not only offer a unique
opportunity to study the relation between mass and light
in a statistical manner (e.g., Geller et al. 2010), but also
may provide an alternative way to constrain cosmolog-
ical parameters through number counts of peaks (e.g.,
Kratochvil, Haiman, & May 2010).

The interpretation of weak lensing data is usually
made by comparing observed signals with analytical model
predictions. For the analytic calculations of lensing prop-
erties, it is customary to adopt a density profile pro-
posed by Navarro, Frenk, & White (1997, hereafter NFW).
The NFW profile has widely been used to extract infor-
mation on cluster masses from weak lensing data. How-
ever, results of such analysis can be biased if the as-
sumption on the NFW profile is not accurate. For in-
stance, lensing signals are determined by all matter dis-
tributions along the line-of-sight, which cause the scat-
ter and bias in mass estimates (Hoekstra 2003; Dodelson
2004; de Putter & White 2005; Marian, Smith, & Bernstein
2010; Mandelbaum et al. 2010; Becker & Kravtsov 2011;
Hoekstra et al. 2011), which can modify lensing signals par-
ticularly at large radii. Indeed, earlier work using N-body
simulations has found the significant contribution of corre-
lated matter around haloes (e.g., Mandelbaum et al. 2005;
Hayashi & White 2008; Tavio et al. 2008; Cacciato et al.
2009; Hilbert & White 2010; Masaki 2011). If the true den-
sity profile deviates from the NFW profile, it can also cause
a systematic bias. Understanding such bias is clearly impor-
tant for attempts to use clusters as a cosmological probe.

In this paper, we investigate cluster lensing profiles in
details using a large set of ray-tracing in N-body simula-
tions. We pay particular attention to lensing profiles around
virial radii where the origin of lensing signals should change
from main haloes to the correlated matter around clusters.
Thanks to the large number of ray-tracing realisations, we
can study lensing profiles out to very large radii, typically
several tens time virial radii of clusters. We consider an an-
alytic model that better fit the simulated signals, which is
then used to explore potential biases of several weak lensing
studies originating from the assumption of the NFW profile.

The structure of this paper is as follows. In Section 2 we
present analytic models adopted in the paper. Detailed com-
parisons with ray-tracing simulations are made in Section 3.
Using the analytic model calibrated by the ray-tracing, we
study potential biases in various lens studies in Section 4.
We summarise the results in Section 5. In Appendices A and
B, we provide formulae which should be useful for various
calculations with the smoothly truncated NFW profile.

2 MODELLING HALO MASS PROFILES

2.1 Main Halo

In this paper, we study the radial profiles of the convergence
and tangential shear around clusters. At small scales the
profiles are dominated by the signals from the dark haloes
associated with the clusters (the so-called 1-halo term). The

current most popular model of the dark halo density profile
is the profile proposed by NFW, which is defined by the
following form (hereafter the NFW profile):

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2
. (1)

The density parameter ρs is related to the virial mass Mvir

defined such that the average density within the virial ra-
dius becomes equal to the nonlinear overdensity ∆vir, which
we compute using the spherical collapse model (see, e.g.,
Nakamura & Suto 1997), times the mean matter density of
the universe. Specifically, ρs is described as

ρs =
∆vir(z)ρ̄m(z)c3vir

3mnfw(cvir)
=

Mvir

4πr3smnfw(cvir)
, (2)

where cvir is the so-called concentration parameter defined
by

cvir ≡
rvir
rs

=
1
rs

[

3Mvir

4π∆vir(z)ρ̄m(z)

]1/3

, (3)

and mnfw(cvir) defined by

mnfw(cvir) ≡
∫ cvir

0

x
(1 + x)2

dx = ln(1 + cvir)−
cvir

1 + cvir
. (4)

The concentration parameter is known to be correlated with
the halo mass and redshift. When necessary, we adopt the
following relation:

cvir(Mvir, z) = 7.26

(

Mvir

1012h−1M⊙

)−0.086

(1 + z)−0.71 , (5)

which was derived from N-body simulations assuming
best-fit cosmological parameters in the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) third year results
(Macciò, Dutton, & van den Bosch 2008), with the addi-
tional redshift dependence based on the simulation result
of Duffy et al. (2008). A well-known advantage of the NFW
profile in lensing studies is that there are analytic expres-
sions for the radial profiles of the deflection angle, con-
vergence, and shear (Bartelmann 1996; Wright & Brainerd
2000).

However, the NFW profile is not well-defined in the
sense that the enclosed mass diverges logarithmically. Thus
Takada & Jain (2003a,b) considered lensing by the NFW
profile truncated at the virial radius (hereafter the TJ pro-
file):

ρTJ(r) =
ρs

(r/rs)(1 + r/rs)2
Θ(rvir − r), (6)

with Θ(x) being the Heaviside step function. The lensing
properties of this profile can also be computed analytically
(see Takada & Jain 2003a,b).

One potential problem of the TJ profile is that the shear
and convergence profiles are not differentiable at the trun-
cation radius, which causes the divergence in the flexion
profile. Baltz, Marshall, & Oguri (2009) proposed a differ-
ent form of the truncation (hereafter the BMO profile):

ρBMO(r) =
ρs

(r/rs)(1 + r/rs)2

(

r2t
r2 + r2t

)n

, (7)

where rt is the truncation radius. In the paper we mainly
use the following dimensionless truncation radius
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to determine the enclosed overdensity inside the splash-
back radius, ∆s. Our results do not strongly depend on
our assumed mass profile inside the halo. For example,
using an isothermal profile instead of NFW gives results
that are consistent at the∼ 10% level. Figure 2 shows the
predicted values of the enclosed overdensity. Throughout
this paper, we define overdensities relative to the mean
matter density, not the critical density. In our model,
∆s depends only on the halo’s accretion rate s, along
with the values of the background cosmological parame-
ters ΩM and ΩΛ at the time the halo is observed. The
behavior we find is unsurprising. As the accretion rate is
increased (larger s), the potential deepens more quickly
in time, resulting in splashback occuring at a smaller ra-
dius, or equivalently, at a larger enclosed overdensity ∆s.
Similarly, at low redshift when ΩM diminishes and ΩΛ

increases, the mean background density of the universe
ρ̄m decreases more during the time between turnaround
and splashback, again resulting in a larger ∆s.
Finally, although the model presented here is ex-

tremely simple to evaluate, we also provide a very rough
fitting function to approximate the location of splash-
back:

∆s ≈ AΩ−b−c s
M edΩM+e s3/4 , (3)

with fitted parameters A = 38, b = 0.57, c = 0.02, d =
0.2, e = 0.52. This fitting function has ∼ 5% accuracy
over the range 0.5 < s < 4, 0.1 < ΩM < 1. The results
shown in this paper do not use this fitting function, since
it is equally simple to evaluate the spherical toy model.

III. COMPARISON WITH SIMULATIONS

In this section, we compare the predictions of the toy
model described in the previous section with results of
numerical simulations. First, we compare our model with
the similarity solutions that arise from the collapse of
scale-free perturbations [2, 7]. Fig. 3 shows one exam-
ple, for accretion rate s = 3. In all cases, we find good
agreement between the caustic location obtained in the
similarity solution and that predicted by the toy model.
This even holds true for collapse of highly triaxial per-
turbations: the main effect of the triaxiality is to make
the splashback surface nonspherical, reducing the maxi-
mal depth of the slope of the spherically averaged profile,
while preserving the mean radial location of splashback.
Our toy model also predicts a significant dependence

on redshift (or equivalently, a dependence on the value
of ΩM ). We cannot test that prediction using similar-
ity solutions, because they assume ΩM = 1. To test
this prediction, we therefore ran 1-dimensional N-body
simulations of the collapse of isolated overdensities. The
simulations evolve the motion of spherical shells follow-
ing Eqn. (1). The initial linear overdensity profiles are
chosen to produce M ∝ as for various values of s. Figure
4 shows an example, for s = 3. The solid curves in the
figure show the results of the 1-D simulations, while for
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FIG. 3. Caustics for self-similar halos [2, 7] with accretion
rate s = 3. The top panel shows the phase space diagram for
spherically symmetric collapse (solid black curve) and for 3D
collapse with e = 0.05 (colormap), while the bottom panel
shows the density vs. radius. The vertical line in the bottom
panel indicates the splashback radius predicted by the spher-
ical collapse model for this value of s. As the density profiles
demonstrate, the caustic location depends mainly on accre-
tion rate, with little if any dependence on the initial ellipticity
e. However, the caustic width does depend on e, apparently
because the shape of the splashback surface is related to the
initial ellipticity.

comparison, the dashed curve shows the similarity solu-
tion for s = 3. Note that for ΩM = 1, the 1-D simulation
does not exactly match the similarity solution. This is
because the dynamics, even in spherical symmetry, are
subject to a slew of instabilities that are not present in
the similarity solution [15, 19, 20]. To suppress these in-

Adhikari, Dalal & Chamberlain (2014) 
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Figure 3. Residuals of convergence profile fitting (see Figure 2
for a representative example) averaged over all redshift and mass
bins, plotted as a function of the normalised radius θ/θvir. Specif-
ically we define the residual as (κsim − κ)/κ, where κsim is the
average convergence profile from ray-tracing simulations and κ is
the convergence profile of the best-fit analytic model. Lines are
same as Figure 2. Upper: Residuals for fitting when only 1-halo
term is considered (see also top panels of Figure 2). Again, the re-
sult for the BMO is similar to the NFW result. Lower: Residuals
when both 1-halo and 2-halo terms are included in the analytic
model (see also bottom panels of Figure 2). The thin solid line
indicates the result when the truncation radius in the BMO pro-
file is fixed to τv = 2.6, the median value among fitting results
for all redshift and mass bins (see Figure 1).

4 IMPACT OF INACCURATE PROFILES ON

CLUSTER WEAK LENSING STUDIES

In most weak lensing studies, the NFW profile has been
adopted in comparing with observed lensing signals, with-
out including any contribution from the 2-halo term. How-
ever, the difference between assumed and true profiles can
induce systematic biases in the interpretation of results. In
this section, we investigate such systematic biases, assum-
ing the analytic model calibrated by ray-tracing simulations
(see Sec. 3) as a true cluster lensing profile.

4.1 Shear profile fitting

The most popular method to measure cluster masses from
weak lensing data is to fit the tangential shear profile with
analytic model predictions, for which the untruncated NFW

Figure 4. Biases in weak lensing mass estimates from shear pro-
file fitting, as a function of the outermost fitting radius θout,
derived by adopting the BMO profile as the true lensing pro-
file. The bias is defined as [Mvir(fit)−Mvir] /Mvir, where Mvir

is the input virial mass and Mvir(fit) is the best-fit virial mass
to the input reduced shear profile, using the NFW profile with
no 2-halo term as a model for fitting. Note that the innermost
fitting radius is fixed to θin = 1′. We consider three input halo
masses, Mvir = 1014h−1M⊙ (solid), 3 × 1014h−1M⊙ (dashed),
and 1015h−1M⊙ (dash-dotted). The halo redshifts are z = 0.2
(upper) and 0.6 (lower). Thick and thin lines indicate results for
the input truncation radii of τv = 2.6 and τv = 2, respectively.
Vertical lines show virial radii for these cluster masses.

profile is usually adopted as the analytic model. Here we
estimate how cluster masses derived by such shear profile
fitting can be biased due to the deviation of the true cluster
lensing profile from the one computed from the NFW profile.

In actual weak lensing analysis of observed data, we
measure reduced shear profiles around clusters, which are
defined by g(θ) ≡ γT(θ)/ [1− κ(θ)]. For a given reduced
shear profile, we usually derive the best-fit mass by mini-
mizing the following χ2:

χ2 =
∑

i

[g(θi)− gNFW(θi;Mvir, cvir)]
2

σ2
i

, (14)

where g(θi) is observed reduced shear profile at the radius
θ = θi and gNFW(θi;Mvir, cvir) is the corresponding analytic
model prediction assuming the NFW profile with no 2-halo
term. We compute g(θi) assuming the BMO profile which
has been shown to best reproduce lensing profiles in ray-
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   assuming traditional 
   NFW without 2-halo

• best-fit mass can be 
   biased low up to 
   ~10%

• bias can be reduced 
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    and 2-halo in profile fitting)
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   halo triaxiality

• bias
   profile mismatch
   substructure? (not in this talk)

getting more and more understood by
ray-tracing simulations and observations
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• weak lensing mass estimates have large scatter

• one way to beat down scatter is to combine
   many measurements → stacked weak lensing 

• very powerful approach in the era of wide-field
   surveys 
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Fig. 2.— The projected mass distribution reconstructed from our weak-lensing catalogs, from one typical cluster (N = 1; ABELL0141;
upper left) to the full sample (N = 50; bottom right). Contours start at S/N = 3, and are spaced at ∆S/N = 2. A Gaussian smoothing
scale of FWHM = 2arcmin is used in all panels (hatched region at lower right).

of the best fit density profile models directly, obtaining
β(r = 0.01r200) = −d log ρ/d log r = 1.1 for the gNFW
and Einasto models, in good agreement with ⟨β⟩ ≃ 1.1
(Navarro et al. 2004; Gao et al. 2012).
We also examine the possible impact of adiabatic

contraction on the total measured density profile (e.g.
Gnedin et al. 2004) by introducing a central point mass
into the model. We obtain an upper limit on the point
mass of Mpoint

<∼ 12× 1012 h−1M⊙, which is degenerate
with the structural parameters of the smooth component
in all models (NFW, gNFW, and Einasto). The best-fit
mass and concentration parameters do not change sig-
nificantly from those listed in Table 1. The excellent fit
of the NFW model – that is based on numerical dark
matter only simulations – to our weak-lensing data, and
the results of adding baryons to the model (albeit in a
simplified form) suggest the dark matter may not suffer
adiabatic contraction by baryons in the cluster core. We
will return to this topic in a future article that combines
strong- and weak-lensing constraints.

3.2. Systematic Errors

We investigate the sensitivity of our results to system-
atic errors. In summary, we conclude that systematic er-
rors are sub-dominant to the statistical errors discussed

in Section3.1.

Shear calibration – We confirmed the reliability of our
shape measurements using simulated data that were gen-
erated using glafic (Oguri 2010) with point spread
functions described by the Moffat profile with a range
of seeing (0.′′5 < FWHM < 1.′′1) and power indices
(3 < β < 12), as described in Oguri et al. (2012). We
obtain a multiplicative calibration bias (m) and additive
residual shear offset (c) (defined following Heymans et al.
2006) of |m| <∼ 0.03 and |c| <∼ 2 × 10−4, respectively, for
FWHM ≃ 0.′′7.

Radial and color cuts – Our results change by just
∆cvir ≃ 0.1 when we vary the number of bins between 8
and 18, change the inner radial cut from 80 to 200 h−1kpc
or the outer radial cut between 2.5 and 3.5 h−1Mpc. The
stability of our results under variations of the inner ra-
dial cut underlines the robustness of our new approach
to selecting red galaxies, and the negligible level of ⟨Σ×⟩
noted in Section 3.1. Moreover, the constraints on con-
centration are stable to ∆cvir <∼ 0.2 with respect to in-
creasing the color cut beyond ∆C > 0.475, and to fitting
only to galaxies brighter than i′ = 25. The constraints
on Mvir are stable to a few per cent under the same tests
(Fig. 1).

Okabe et al. (2013)

• stacking significantly 
   enhances S/N

• one can get average 
   properties very well

• particularly powerful
   when applied to wide
   -field survey data
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Figure 16. Stacked surface mass density profiles from the
CAMIRA SDSS DR8 clusters and CFHTLenS shear catalogue.
Here we plot the low cluster redshift bin defined by 0.1 < zcl <
0.3. Different symbols show results for different richness bins;
20 < N̂cor < 25 (filled triangles), 25 < N̂cor < 35 (filled squares),
35 < N̂cor < 50 (crosses), and 50 < N̂cor < 90 (open circles),
which are shifted vertically by −0.5, 0, 0.5, and 1 dex, respec-
tively, for illustrative purpose. Solid lines show best-fitting NFW
profiles including the miscentring effect (see Section 5.2 for more
details).

Figure 17. Similar to Figure 16, but results for the high cluster
redshift bin 0.4 < zcl < 0.6 are shown.

5.4 Results

Stacked surface mass density profiles for low (0.1 < zcl <
0.3) and high (0.4 < zcl < 0.6) redshift cluster samples
are shown in Figures 16 and 17, respectively. It is clear that
stacked weak lensing signals are detected significantly for all
the 8 cluster subsamples. As expected, the signals decreases
with increasing projected radius, which are found to be fit-
ted reasonably well by our model including the miscentring
effect (equation 39). From the comparisons with the theoret-
ical model we derive constraints on model parameters such
as the mean halo mass ⟨Mvir⟩ and the fraction of the centred
component fcen. We summarize the results in Table 1.

The fitting results clearly indicate that the mean halo
mass inferred from stacked weak lensing correlates well with
the richness. To illustrate this point, we show the scaling re-

Figure 18. Scaling relations between the mean richness ⟨N̂cor⟩
and the mean halo mass ⟨Mvir⟩ inferred from the CFHTLenS
stacked weak lensing analysis. Filled triangles show the relation
for the low-redshift (0.1 < zcl < 0.3) cluster sample, whereas open
squares show the relation for the high-redshift (0.4 < zcl < 0.6)
cluster sample (see also Table 1). Solid lines with shading are
power-law fits (equation 40) and 1σ error of the scaling relations.

lation in Figure 18. We do not find significant difference in
the scaling relations between the low- and high-redshift clus-
ters. Our result indicates that the richness limit of N̂cor > 20
for the CAMIRA SDSS DR8 catalogue corresponds to the
cluster virial mass limit of Mvir ! 1× 1014h−1M⊙ over the
redshift range of 0.1 < zcl < 0.6. The virial mass limit may
be slightly lower at higher redshifts, possibly due to the in-
creased scatter of the richness estimate as discussed above.

We quantify the mean mass-richness relations by fitting
them to the following power-law relation

log

(

⟨Mvir⟩

h−1M⊙

)

= aM log

(

⟨N̂cor⟩

30

)

+ bM . (40)

We find aM = 1.44 ± 0.27 and bM = 14.30 ± 0.05 for the
low redshift cluster sample, and aM = 2.10±0.39 and bM =
14.20±0.06 for the high redshift cluster sample. The best-fit
relations are shown in Figure 18.

In addition to the mean mass-richness relation, the
stacked weak lensing analysis provides some insight into the
halo miscentring effect. Although our constraints on the mis-
centring parameter fcen (see Table 1) is not tight due to the
degeneracy with the concentration parameter, we see a trend
that fcen is smaller at higher redshifts. In particular fcen is
most significantly smaller than unity for high redshift, low-
richness clusters. This is presumably due to the fact that
these clusters intrinsically contain small number of cluster
member galaxies, and therefore proper selections of central
galaxies may be more challenging. Our result here is another
example of how weak lensing can be used to study halo
miscentring effects (Oguri et al. 2010; George et al. 2012;
Ford et al. 2014).

Finally we perform a simple test to compare the ob-
served cluster abundance with the theoretical expectation.
Specifically we adopt the power-law scaling relation obtained
from the CFHTLenS stacked weak lensing analysis (equa-
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• stacking of CFHTLenS
  data for SDSS clusters 

• calibrate richness-mass
   relation well from 
   ~120 deg2 lensing data,
   down to ~1014MSun



Bias in stacking analysis

• you need to understand your sample very well
   for proper understanding of stacking results 

• if you take the interpretation of the sample 
   wrong, stacking analysis results will be biased

• selection function is critically important!



Possible cluster selection effects

• concentration/formation history

• merger

• orientation bias
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Fig. 3.— Top: The time evolution of the mass bias (top) for three clusters, CL10, CL104, and CL6 at three radii r2500 (red, dotted), r500
(black, solid), and r200 (blue, dashed). Bottom: The mass accretion history of the three clusters at r500, normalized by M500 at z = 0.
The vertical gray line marks the beginning of the latest major merger for each of the clusters. The red ticks mark the epochs in CL10
corresponding to the panels in Figures 1 and 2.

necessarily biased to a small number of early forming ob-
jects. We plot the evolution of the mass bias to 9.25 Gyr
following the last merger at which point fewer than three
clusters contribute to the average.
The qualitative features for the individual clusters pre-

sented in Figure 3 are also apparent in the sample-
averaged evolution in Figure 4. Immediately preceding
the merger, the hydrostatic mass underestimates the true
mass by ⇥ 10% at all radii. This bias grows to nearly
30% in the outskirts shortly after the merger begins. Fol-
lowing the peaks associated with the merger shocks, the
hydrostatic mass bias decreases over the subsequent 8
Gyr from �15–20% to 3%, 10% and 18% within r2500,
r500 and r200, respectively.
The peaks caused by the propagating merger shocks

have smaller amplitude and are broader than the indi-
vidual cluster histories seen in Figure 3. Therefore, the
mean mass bias remains negative at all tmerger. This is
caused by a variety of factors, including di�erences in
the merger mass ratio and the orbital impact parameter,
which changes the time o�set between the peak and the
start of the merger. Since the peaks are narrow in time
(typically less than 0.5 Gyr), and we are primarily con-
cerned with the average evolution after the merger, we
make no attempt to reduce this broadening.
We also examined how the mass bias depended on var-

ious parameters, such as merger ratio, final cluster mass
and redshift. We found little dependence on present mass
of the cluster, with the larger clusters experiencing a
slightly greater peak in the mass bias immediately fol-
lowing merger.

4. INFLUENCE OF NON-THERMAL PRESSURE ON THE
HYDROSTATIC MASS BIAS

Figures 3 and 4 demonstrate that the magnitude of
the mass bias decreases steadily following a merger, yet

Fig. 4.— Averaged mass bias as a function of time elapsed since
last merger (in Gyrs) for the sixteen clusters. A more detailed
discussion of this figure is located in §3.1. The biases are plotted
at radii r2500 (red, dotted), r500 (black, solid), and r200 (blue,
dashed). The error bars show the 1� error on the mean at r500.

never fully disappears. If, as has been previously sug-
gested (Lau et al. 2009; Nagai et al. 2007b; Rasia et al.
2004), residual motions in the ICM account for this bias,
the non-thermal component of pressure due to these mo-
tions should see a similar evolution to the hydrostatic
mass bias. We now investigate the evolution of this non-
thermal component in more detail.
The top panels of Figure 5 show the evolving contribu-

tion of random motions to the total ICM pressure (left
panel) and pressure gradient (right panel) averaged over
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Simulation (Nelson et al. 2011)Clowe et al. (2006)

• merger can have large impact on observables

• change X-ray properties drastically

• strong lensing cross section also enhanced



An extreme example?
Oguri et al. MNRAS 429(2013)482

• SDSS J1029+2623
  (“the Hidden Fortress”)

• mass distribution
   very concentrated

• mass discrepancy
   MX/Mlens~2−3 (!)

• interpretation:
  line-of-sight merger

8 M. Oguri et al.

Figure 9. The enclosed mass within a sphere of radius r from the
Chandra X-ray analysis and from the combined lensing analysis
(solid line; see Section 5.1), assuming a spherically symmetric
mass distribution. For the Chandra X-ray analysis, we show the
results for the isothermal β-model from Ota et al. (2012, open
circle) and a β-model with the temperature profile of Burns et al.
(2010, open squares). The errors in the X-ray masses come from
the statistical errors in the X-ray temperature measurement. For
reference, we also show the cluster radii rvir, r500, and r2500,
which are computed from the best-fit lensing mass profile, as well
as the Einstein radius rE.

able. To estimate a possible impact of these systematic er-
rors, we consider an extreme situation where both the HST
and Subaru weak lensing measurements are offset by ±10%,
and find the resulting shifts of the best-fit virial mass to
∼ ±0.3 × 1014h−1M⊙. The systematic error for this case is
still comparable to the 1σ statistical error, implying that
these systematic errors are not significant.

5.2 Comparison with X-ray mass

Ota et al. (2012) presented the Chandra X-ray analysis of
SDSS J1029+2623, and derived a mass profile assuming hy-
drostatic equilibrium and isothermality. Figure 9 compares
the X-ray mass profile from Ota et al. (2012) with the result
of the combined lensing analysis in Section 5.1. We find that
the mass profiles derived from lensing and X-ray differ sig-
nificantly with each other. While the enclosed masses agree
at the radius of ∼ 100h−1kpc that roughly corresponds to
the Einstein radius of this system, the enclosed masses in-
ferred from the X-ray data are a factor of ∼ 2 larger than
those inferred from the combined lensing analysis at radii
r ! r2500, where r2500 is defined by the radius within which
the average density is 2500 times the critical density at the
cluster redshift. We note that the lensing derived mass im-
plies the X-ray temperature of T ∼ 2 − 3 keV and X-ray
luminosities of LX ∼ 1044 erg s−1 expected from X-ray scal-
ing relations (e.g., Dai, Kochanek, & Morgan 2007), which
are significantly lower than observed X-ray temperature of
T ∼ 8.1 keV and LX ∼ 1045 erg s−1 (Ota et al. 2012). Also it
is worth noting that recent systematic weak lensing analysis

for clusters at z " 1 found somewhat smaller weak lensing
masses for a given X-ray temperature (Jee et al. 2011), which
is qualitatively similar to our result, although the difference
appears to be much smaller than found in this paper.

There are several effects that can lead to a systematic
difference between the X-ray and lensing masses. One of the
most significant effects for X-ray cluster mass measurements
is any violation of the assumption of hydrostatic equilibrium
due the presence of non-thermal pressure support. However,
this effect typically leads to an underestimate of the X-ray
mass, particularly in the outskirts of clusters (e.g., Mah-
davi et al. 2008; Zhang et al. 2010), and would only make
the discrepancy larger. Another possibility is our assump-
tion of isothermality. In fact, X-ray temperatures generally
decrease at large radii, but our Chandra data were not sen-
sitive enough to detect such a decrease. To examine this
effect, we adopt a temperature profile obtained from hydro-
dynamic simulations (Burns et al. 2010), which appears to
be consistent with recent X-ray observations of cluster out-
skirts (e.g., Akamatsu et al. 2011), and recalculate the X-ray
mass profile. While this reduces the difference at the center,
it cannot explain the overall difference between the X-ray
and lensing masses. It is also difficult to explain the differ-
ence by a triaxial halo, because the large cvir implies that the
major-axis of the cluster is more likely to be aligned with
the line-of-sight direction, in which case the lensing mass
should be overestimated (Oguri et al. 2005).

The most likely explanation for the mass discrepancy
is shock heating of the intracluster gas during a merger.
Numerical simulations show significant boosts of X-ray lu-
minosity and temperature ∼ 1 Gyr after mergers, which can
lead to significant overestimates of X-ray masses (e.g., Ricker
& Sarazin 2001; Takizawa, Nagino, & Matsushita 2010; Ra-
sia et al. 2011; Nelson et al. 2012). Observationally, there are
several clusters showing signs of ongoing mergers that also
have significantly higher X-ray masses then lensing masses
(e.g., Okabe & Umetsu 2008; Okabe et al. 2011; Soucail
2012). Indeed the lensing cluster of SDSS J0129+2623 shows
hints of an ongoing merger, including the bimodal nature of
cluster cores, the complex X-ray morphology, a possible off-
set between mass and X-ray centroids, and the large G1-G2
velocity difference. In addition, a line-of-sight merger can
naturally explain the high concentration parameter value
for this cluster (e.g., King & Corless 2007). Spectroscopy of
many more cluster member galaxies are needed to under-
stand this complex cluster further. If this interpretation is
correct, the agreement between X-ray and lensing masses
near the Einstein radius might just be a coincidence, in that
both the masses are overestimated by merger shock heating
and the halo elongation along the line-of-sight, respectively.

5.3 Gas-to-mass ratio

Another useful cross-check of our interpretation is provided
by the gas-to-mass ratio, fgas(< r) = Mgas(< r)/Mtot(< r),
because it is expected to roughly match the cosmic baryon
fraction Ωb/ΩM ≃ 0.167 (Komatsu et al. 2011) for mas-
sive clusters, and also because Mgas appears to be the most
promising cluster mass proxy (Okabe et al. 2010; Fabjan
et al. 2011). We use the gas mass profile implied by the
isothermal β-model from Ota et al. (2012) to estimate a
gas mass within the radius r500 = 0.49h−1Mpc from the
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Cluster selection in optical surveys

optical (galaxy) weak lensing
(see talk by S. Miyazaki)



Orientation bias

• triaxiality affects some cluster selection methods

• then resulting cluster sample has orientation bias,
   i.e., cluster orientations w.r.t line-of-sight direction
   is not random 

• since lensing properties are sensitive to cluster 
   orientations, the orientation bias can have large
   impact on stacked lensing analysis

θ
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Figure 5. Measured axis ratio q as a function of estimated halo and cluster
richness l . Again horizontal offsets are applied to the data points for greater
clarity.

We therefore assume that the mocks have an intrinsic scatter in the
mass-richness relation that exceeds the scatter in the real Universe.
The effect for our study would be that the points in Fig. 4 are shifted
further to the right than they would be in real data, i.e., the effect
of orientation bias would be overestimated in the mocks. In the
absence of mock catalogues, which reproduce the estimated real
scatter in the mass-richness relation, we tested the hypotheses that
this scatter moves the location of data points in Fig. 4 from left to
right with a simulation that has an even higher scatter using only the
REDMAPPER cluster finder. We found that indeed the points move
further to the right. It is difficult to estimate how much the curve in
Fig. 4 would shift to the left if slnM|l is indeed as low for optically
selected clusters as indicated by Rykoff et al. (2012) because many
cluster finders’ completeness has a complex dependency on this
quantity.

In real data the true mass of clusters is of course unknown and
galaxy clusters are binned by a proxy for their mass, often a richness
estimator in the case of optically selected clusters. Figure 5 shows
the measured axis ratio for haloes and clusters binned by the optical
richness estimator l . First, we notice that haloes, when binned by
optical richness, are no longer spherical. This confirms our initial
hypothesis that orientation bias is not only at work during the cluster
finding process but also during richness estimation. Prolate clusters
appear denser and thus richer on the sky. They are pushed to higher
richness bins, which then on average deviate from spherical symme-
try. This happens at the expense of the lowest richness bins, from
which the prolate haloes are removed. They then appear slightly
oblate at the lowest richness. The axis ratio of haloes increases with
increasing l until seemingly an approximate balance between pro-
late haloes that are pushed up from lower richness bins and prolate
haloes that are pushed into the next higher redshift bin is established.
This seems to be the case at l & 15. We also note that the haloes in
the highest richness bin are marginally, but not significantly, more
prolate than in any other bins, further supporting this scenario.

The behaviour is different for galaxy clusters. At l > 15 the
measured axis ratios for all cluster finders are consistent with being
independent of richness and around q ⇠ 1.1. Significant outliers
occur at lower l for the REDMAPPER, GMBCG, and WAZP cluster
finders. These values should be excluded from any interpretation of
the present study. The performance of REDMAPPER is only charac-
terised and well understood at l > 20 (Rykoff et al. 2014), which is

the threshold adopted by the developers for inclusion of objects in
the cluster catalogue. It is also important to note that REDMAPPER
cluster detection and l richness estimation are strongly intertwined
and tuned to each other. Thus the two lowest richness points of the
GMBCG and WAZP cluster are only presented for completeness and
should not be interpreted as having reliable richness measurements
and they should not be understood as an ability of these cluster
finders to find lower richness clusters than REDMAPPER. Given the
complex interplay between cluster selection and richness estimation,
we make no attempt at an interpretation of these points.

Binning by richness as in Fig. 5 does not reproduce the trend
of decreasing prolateness with increasing mass and thus increasing
richness seen in Fig. 4. We observe that the scatter in optical richness
leads to substantial mixing of cluster masses between richness bins.
We must, however, caution that there are indications that the intrinsic
scatter in the simulations exceeds that of real data and thus artificially
enhances this mixing.

Furthermore, the net effect of orientation bias to push clusters
into higher richness bins counteracts the decrease of axis ratios with
increasing mass. The reason is that lower mass clusters, which are
more subject to orientation bias in the cluster finding step and thus
appear more elliptical, are preferentially measured to have higher
richness as compared to the seemingly rounder high mass clusters.
Thus low mass clusters are preferentially pushed into higher richness
bins, resulting in a higher measured mean ellipticity. The result is
that orientation bias acts as an additional correlated scatter between
cluster mass and richness at fixed mass.

5 SUMMARY & DISCUSSION

We have established that optical cluster selection and richness es-
timation are subject to a bias heretofore unconsidered in the study
of optical cluster selection. Prolate galaxy clusters are found pref-
erentially as compared to spherical clusters, and their richness is
over-estimated.

We ran a wide variety of cluster finders to test the orientation
bias when selecting clusters. As a function of mass, all cluster find-
ers studied here show a similar orientation bias. The large scatters
associated with our axis ratio measurements also smear out any
possible difference in the behavior of different cluster finders. A
consequence of this orientation bias is that stacked weak-lensing
analyses of galaxy clusters violate the previously made assumption
that averaging over enough clusters makes the stacks spherically
symmetric. We find instead that binning optically selected galaxy
clusters by optical richness makes these stacks elliptical with axis
ratios of major over minor axes q ⇠ 1.1. The exact value and its
behaviour with richness likely depends on how much additional
scatter the richness estimator at fixed mass has, as well as the in-
trinsic scatter of the mass–richness relation. The latter is larger in
the simulations we used than is expected in the real Universe and
the value of q we find here is an upper limit when clusters can be
uniquely associated with haloes. For simplicity and because of its
reported low intrinsic scatter, we have tested only the l richness
estimator (Rykoff et al. 2012). The similar orientation bias of cluster
finders when rank ordered by mass turns into a similar orientation
bias when clusters are rank ordered by the same richness estimator.

The choice of stacking matched clusters instead of all clusters,
including false positives and clusters encompassing more than one
halo, was made to avoid miscentring. Optically selected clusters
have a certain rate of misidentified central galaxies, which serve as
proxy for the halo centre. If we were to stack on optically identified
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Figure 5. Relationship between ν1000 and νκ as a function of
I/ITH (top left), a/c (bottom left) and | cos(θz)| (right panels).
Here haloes with M1000 > 3 × 1013h−1M⊙ at 0.1 < z < 0.4 are
considered. The dots show the relationship for each halo and filled
circles show mean, vertical error bars show the rms scatter, and
the horizontal error bars show the range where sample is taken.
The K maps with the shape noise generated from the Gaussian
filter are used except for the bottom-right panel where the noise-
free K maps are used. The green curve in the bottom-right panel
shows the theoretical prediction based on the triaxial halo model.

We now discuss details of the halo shape effect. In Fig. 5,
the fractional difference between ν1000 and νκ measured from
K map (with the galaxy shape noise added) is shown as a
function of the halo concentration I/ITH (top-left panel), the
axis ratio a/c (bottom-left panel) and the halo orientation
with respect to the line-of-sight direction | cos(θz)| (right
panels). Dots indicate values for each halo, where we con-
sider haloes with M1000 > 3× 1013h−1M⊙ at 0.1 < z < 0.4
with the mean S/N of this halo sample being ⟨ν1000⟩ = 3.7.
Filled circles show average values. We find that there ex-
ists (1) a clear correlation between the halo orientation and
the peak height deviations from the NFW model prediction,
whereas (2) no correlation for the halo shape parameters
(I/ITH and a/c). The results indicate that the intrinsic halo
shape (concentration and axis ratio) does not cause a sys-
tematic bias in the peak heights as long as one employs
an appropriate definition of the halo mass such as M1000,
but just contribute to the scatter. However the halo orienta-
tion does cause the systematic bias because the line-of-sight
projected mass at the inner region depends strongly on the
halo orientation (see also Oguri et al. 2005; Gavazzi 2005).
In the bottom-right panel of Fig. 5, the theoretical predic-
tion based on the triaxial halo model (Jing & Suto 2002;
Oguri & Blandford 2009) is also shown (see Section 2.1).
We find that the triaxial model nicely reproduces the orien-
tation dependence of the peak heights found in ray-tracing
simulations, except for the small offset which is originated
from an approximation involved in the triaxial haloes (see
Oguri et al. 2005).

Figure 6. Probability distribution functions of the halo orien-
tation with respect to the line-of-sight direction, | cos(θz)|, for
weak lensing selected clusters. We adopt the peak height thresh-
old value of ν = 4. The dashed histogram is for the NFW-
corresponding peaks, i.e., peak heights evaluated by the spherical
NFW model via spherical overdensity masses, the long-dashed
histogram for the peak heights measured from the noise-free K
map, and the solid histogram for the peak heights measured from
the noise added K map. The dotted curve shows the analytic
model expectation based on the triaxial halo model.

Figure 7. The halo orientation bias as a function of the peak
S/N threshold. We quantify the bias by the ratio of the numbers
of haloes with the major axis aligned to the line-of-sight direction
(| cos θz| > 0.5) to those with anti-aligned (| cos θz | < 0.5). The
dashed histogram is for the peak heights measured from the noise-
freeKmap, and the solid histogram for the peak heights measured
from the noise added K map. The dotted histogram shows the
analytic model prediction based on the triaxial halo model.

4.2 Selection bias in weak lensing selected clusters

Given the strong dependence of the peak heights on the halo
orientation, we shall now investigate its impact on weak
lensing selected cluster catalogues. In Fig. 6, we show the
probability distribution function (PDF) of the halo orienta-
tion with respect to the line-of-sight direction, | cos(θz)|, for
haloes with peak heights above the threshold value ν = 4.
Here we include only haloes at 0.1 < z < 0.4 for sim-
plicity. Different histograms are for different causes; NFW-
corresponding peaks (dashed), peak heights measured from
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• optical and weak lensing selected clusters are
   preferentially aligned with line-of-sight direction!

Dietrich et al. (2014) Hamana, Oguri et al. (2012)



Summary
• origins of scatter and bias in cluster (lensing) mass 
   estimates are getting more and more understood
   − triaxiality, outer profile, ...

• stacking analysis is powerful in reducing scatter, 
   but understanding of the selection function is 
   critically important (e.g., orientation bias)


