Scatter and bias in cluster mass estimates

Masamune Oguri (University of Tokyo)

2015/3/25 Astroparticle View of Galaxy Clusters @ Hiroshima

Scatter and bias in lensing cluster mass estimates

Masamune Oguri (University of Tokyo)

2015/3/25 Astroparticle View of Galaxy Clusters @ Hiroshima

Cluster mass

- one of the most fundamental parameters that characterize clusters
- not easy to measure because it is dominated by the mass of dark matter
- critically important for cluster cosmology

Planck 2015

- cosmology with Planck
 SZ cluster counts
- different mass estimates yield quite different cosmology results
- uncertainty in cluster mass estimates is the most outstanding issue in cluster cosmology!

Mass estimates: scatter and bias

"accuracy" of mass estimates?

scatter

important for analysis of individual clusters

• bias

important for statistical analysis even for the case scatter \gg bias

Cluster mass estimates

- X-ray hydrostatic equilibrium small scatter, large bias
- weak gravitational lensing large scatter, small bias

X-ray hydrostatic equilibrium

- X-ray mass derived w/ hydrostatic equilibrium is known to be biased low by ~10-40%
- need independent mass estimates to quantify the X-ray mass bias

Weak lensing

- purely gravitational effect
- direct measurements of total mass, including dark matter!

S. Colombi

Scatter and bias in lensing mass

• scatter

statistical error – shot noise, LSS halo triaxiality

• bias

profile mismatch substructure? (not in this talk) photo-z, dilution, ... (not in this talk)

Halo triaxiality

- ACDM model predicts highly non-spherical halo shape
- typical major-to-minor axis ratio 2:1

http://www.mpa-garching.mpg.de/galform/millennium/

Observational evidence

y [h⁻¹Mpc]

- direct measurements of halo shapes w/WL
- non-sphericity detected at $\gtrsim 5\sigma$

 $\langle e_{2D} \rangle = 0.46 \pm 0.04$ (Oguri et al. 2010 w/ LoCuSS) $\langle e_{2D} \rangle = 0.47 \pm 0.06$ (Oguri et al. 2012 w/ SGAS)

 e_{2D} quite consistent with \CDM predictions!

Oguri, Takada, Umetsu, Broadhurst ApJ 632(2005)841

Projection effect

 projected mass profile depends sensitively on the projection direction Oguri, Takada, Umetsu, Broadhurst ApJ 632(2005)841

Projection effect

 lensing-derived mass and concentration are significantly affected by the cluster orientation
 → ~20-30% scatter in lensing mass

Bias from radial mass profile

- data have often been analyzed assuming a simple NFW profile
- any mismatch between assumed and true mass profiles can cause bias

Possible origins of bias

Halo concentration

- in some work, specific values ρ(r)
 or forms of concentrations
 are assumed to get mass
- the mass would be biased if the assumed concentration is wrong

 concentrations in real clusters consistent with ΛCDM predictions?

(cf. anomalously high concentrations claimed by Broadhurst et al.)

LoCuSS (Okabe et al. 2013)

CLASH (Merten et al. 2014)

concentration values also consistent with ACDM prediction!

(←see talk by N. Okabe)

Outer density profile of clusters

- has not attracted much attention until recently
- turned out to be quite important for accurate mass measurements

Oguri & Hamana MNRAS 414(2011)1851 Outer lensing profiles

- detailed lensing profiles from ray-tracing in N-body simulations
- truncated NFW profile + 2-halo term can fit the profile in the simulation well

Oguri & Hamana MNRAS 414(2011)1851 Truncation radius

 profiles in simulations are fitted with a smoothly truncated NFW profile (Baltz, Marshall & Oguri 2009)

$$\rho_{\rm BMO}(r) = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2} \left(\frac{r_t^2}{r^2+r_t^2}\right)^n$$

 truncation radius weakly depends on halo masses, more massive halos have smaller truncation radius

Adhikari, Dalal & Chamberlain (2014)

Physical origin of steepening?

- steepening can be explained by "turn-around" of infalling material
- this suggests that the cutoff radius is partly determined by the accretion rate

Oguri & Hamana MNRAS 414(2011)1851 Mass bias and outer density profile

- fitting shear profiles assuming traditional NFW without 2-halo
- best-fit mass can be biased low up to ~10%
- bias can be reduced by restricting fitting region to ≤ r_{vir} (or including steepening and 2-halo in profile fitting)

thin: r_t=2.0r_{vir}

Scatter and bias in lensing mass

• scatter

statistical error – shot noise, LSS halo triaxiality

• bias

profile mismatch substructure? (not in this talk)

getting more and more understood by ray-tracing simulations and observations

Statistical lensing mass estimate

- weak lensing mass estimates have large scatter
- one way to beat down scatter is to combine many measurements → stacked weak lensing
- very powerful approach in the era of wide-field surveys

Power of stacking

- stacking significantly enhances S/N
- one can get average properties very well
- particularly powerful when applied to wide -field survey data

Oguri MNRAS 444(2014)147 Scaling relation

- stacking of CFHTLenS data for SDSS clusters
- calibrate richness-mass relation well from ~120 deg² lensing data, down to ~10¹⁴M_{Sun}

Bias in stacking analysis

- you need to understand your sample very well for proper understanding of stacking results
- if you take the interpretation of the sample wrong, stacking analysis results will be biased
- selection function is critically important!

Possible cluster selection effects

- concentration/formation history
- merger
- orientation bias

Effects of merger

- merger can have large impact on observables
- change X-ray properties drastically
- strong lensing cross section also enhanced

Clowe et al. (2006)

1.5

Ota, Oguri et al. ApJ **758**(2012)26 Oguri et al. MNRAS **429**(2013)482 **An extreme example?**

- SDSS J1029+2623 ("the Hidden Fortress")
- mass distribution very concentrated
- mass discrepancy M_X/M_{lens}~2-3 (!)
- interpretation: line-of-sight merger

Cluster selection in optical surveys

optical (galaxy)

weak lensing (see talk by S. Miyazaki)

Orientation bias

- triaxiality affects some cluster selection methods
- then resulting cluster sample has orientation bias, i.e., cluster orientations w.r.t line-of-sight direction is *not* random
- since lensing properties are sensitive to cluster orientations, the orientation bias can have large impact on stacked lensing analysis

Estimated orientation bias

 optical and weak lensing selected clusters are preferentially aligned with line-of-sight direction!

Summary

- origins of scatter and bias in cluster (lensing) mass estimates are getting more and more understood

 triaxiality, outer profile, ...
- stacking analysis is powerful in reducing scatter, but understanding of the selection function is critically important (e.g., orientation bias)