Quasar lenses as a cosmological probe

Masamune Oguri (NAOJ)

10/02/2010, QGC2010@Daejeon

Dark energy

Mysterious energy that accelerates the universe

Modified gravity? Void?

Now, only astronomical observations provide a clue to its nature

Astro2010: next 10yr science in the US

ground #1 – LSST

space #1 – WFIRST

Dark energy, dark matter, time-domain astronomy Dark energy, extra-solar planet

Probing dark energy

Method	Probe
CMB anisotropy	D _A (z=1091)
Supernova la	DL(z)
Baryon Acoustic Oscillation	D _A (z), H(z)
Weak lensing	G(z) (growth rate)
Cluster of galaxies	G(z) (growth rate)

Know systematics: example

Cosmological constraint from type-la supernovae

Different light-curve fitting methods yield inconsistent results

→ Results are already systematics-limited !

Know systematics: example

Nearby+SDSS+ESSENCE +SNLS+HST

Cosmological constraint

from type-la supernovae

Possible approaches?

1. work hard to reduce systematics

2. use many independent methods for cross-checking

U_A

Quasar lensing

observer

lens = galaxy

source = quasar

HST images (NASA/ESA/M. Oguri)

Cosmology w/ quasar lenses

1. Strong lensing probability \rightarrow cosmic volume D_A(z)²H(z)⁻¹

2. Time delays between quasar images \rightarrow Hubble constant H₀ + distance ratio D_A(z)D_A(z_s)/D_A(z,z_s)

Cosmology w/ quasar lenses

1. Strong lensing probability \rightarrow cosmic volume D_A(z)²H(z)⁻¹

2. Time delays between quasar images \rightarrow Hubble constant H₀ + distance ratio D_A(z)D_A(z_s)/D_A(z,z_s)

"Classical" lensing test

Fukugita et al. (1990), Turner (1990)

"standard volume"

Lensing test of dark energy

The probability that a quasar at z_s is lensed

× cosmological volume $D_A(z)^2H(z)^{-1}$ × lensing power $[D_A(z,z_s)/D_A(z_s)]^2$ \rightarrow dark energy!

SDSS-I (2000-2005) & SDSS-II (2005-2008)

Imaging 8000 deg² in five optical bands

Spectroscopy galaxies/quasars selected from imaging data

SDSS quasar lens search (SQLS)

- Survey of lensed quasars using the SDSS spectroscopic quasar catalog
- Select candidates from morphology/color
- Follow-up observations for confirmation

Team

Bob Becker (UC Davis)
Joe Hennawi (MPIA)(PI) Masamune Oguri (NAOJ)
Bart Pindor (Melbourne)(PI) Naohisa Inada (U Tokyo)
Issha Kayo (IPMU)Bart Pindor (Melbourne)
Gordon Richards (Drexel)
Don Schneider (PSU)Chris Kochanek (OSU)
Tomoki Morokuma (U Tokyo)Min-Su Shin (Michigan)
Michael Strauss (Princeton)
+ many others...

SDSS quasar lens search (SQLS)

Public web page, up-to-date info on SQLS

http://www-utap.phys.s.u-tokyo.ac.jp/~sdss/sqls/

(Search "SDSS quasar lens search" on google/yahoo/bing/...)

lt's never easy...

lt's never easy...

[Inada et al. AJ, 135, 496 (2008)]

SDSS quasar lens search (SQLS)

Current Status

>98% of the survey done

46 confirmed new lensed quasars2 probable new lensed quasars13 previously known lensed quasars

\rightarrow 61 lensed quasars !

(cf. ~120 lensed quasars known to date)

Constraining dark energy

of lenses as a function of image separation θ vs. model predictions with different Ω_{Λ} (assume flat)

The number is sensitive to dark energy, with larger Ω_{Λ} being more lenses

Result from DR7: Ω_M - Ω_Λ

Combine lens result with SDSS BAO (Eisenstein et al. 2005)

 $\Omega_{\rm M} = 0.26^{+0.03}_{-0.02}$

 $\Omega_{\Lambda} = 0.86^{+0.09}_{-0.12}$

Consistent with "standard" model

Result from DR7: dark energy

Lens probability: summary

- Strong lensing probability of quasars is sensitive to the evolution of cosmic volume, and hence to dark energy
- We (SQLS) have construct the largest sample of quasar lenses appropriate for statistical studies
- The result is consistent with the current standard cosmological model, providing independent confirmation of dark energy

Cosmology w/ quasar lenses

1. Strong lensing probability \rightarrow cosmic volume D_A(z)²H(z)⁻¹

2. Time delays between quasar images \rightarrow Hubble constant H₀ + distance ratio D_A(z)D_A(z_s)/D_A(z,z_s)

Time delay

(observed for ~20 lenses so far)

Poindexter et al. (2007)

Ho and dark energy

The characteristic scale of CMB is sound horizon at recombination ($r_s \sim 150$ Mpc in comoving)

What we really measure is the angle subtended by r_s , i.e., $\theta_s = r_s / D_A(z=1091)$

Constraint on dark energy from CMB is only through this ($\rightarrow D_A$), meaning that H₀ and dark energy are always degenerate

 \rightarrow accurate H₀ is a key to improve DE constraint!

Distance ratio cosmography

Time delays also probe dark energy directly through distance ratio D_A(z_I)D_A(z_S)/D_A(z_I,z_S)

The unique distance combination lead to the unique degeneracy direction, making it valuable DE probe (see also Linder 2004)

LSST Science Book (arXiv:0912.0201)

However, ...

The biggest problem: lens mass model

The resulting constraint on H₀ depends strongly on assumed mass model!

(example for 4-image lens PG1115+080)

Two approaches

- 1. "Golden lens" approach Investigate a singe lens in great detail to constrain its mass profile, and then use it to constrain cosmological parameters (e.g., Suyu et al. 2010)
- 2. "Ensemble of lenses" approach Combine many lenses to average out the lens mass model uncertainty

Two approaches

- 1. "Golden lens" approach Investigate a singe lens in great detail to constrain its mass profile, and then use it to constrain cosmological parameters (e.g., Suyu et al. 2010)
- 2. "Ensemble of lenses" approach Combine many lenses to average out the lens mass model uncertainty

Statistics of time delays

Oguri ApJ, 660, 1 (2007)

A new statistical technique to combine many time delay measurements

- 1. Define "reduced time delay" that quantifies the complexity of the lens potential
- 2. Derive reduced time delays as a function of image configurations and construct p(delay|image config.)
- 3. Compare it with observed delays to get constraints on cosmological parameters

Statistical constraint on Ho

- Combined analysis of time delays for 18 lenses
- Fixing other cosmological parameters, the Hubble constant is constrained to H₀=70±6 km/s/Mpc

Oguri ApJ, 660, 1 (2007)

Future: LSST (Large Synoptic Survey Telescope)

http://www.lsst.org

#1 in Astro2010

8.4-m telescope in Chili

Survey from ~2017

Cover the entire visible sky every few days

 \rightarrow Time-domain data for 1/2 of the whole sky!

Lensed QSOs/SNe in LSST

Oguri & Marshall MNRAS, 405, 2579 (2010)

Time delays will be measured for all of these!

Forecasting DE measurement

Future time delays can help to constrain w(z)

Time delay: summary

- Time delays can be a unique probe of dark energy, through H₀ and distance ratio D_A(z_I)D_A(z_S)/D_A(z_I,z_S)
- The current limiting factor is the mass distribution in lensing galaxy; we can get around this using novel statistical technique
- Currently time delays are already putting interesting cosmological constraints
- In the future, statistics of time delays can be a powerful cosmological probe thanks to planned time-domain surveys (e.g., LSST)

Thank you! 감사합니다!