## Distance determination beyond the nearest galaxies (?)

Masamune Oguri (University of Tokyo)

2016/5/24 Astronomical Distance Determination@Beijing

#### Gravitational wave standard sirens

Masamune Oguri (University of Tokyo)

2016/5/24 Astronomical Distance Determination@Beijing

## February 11,2016



Saul Loeb/Getty Images

Abbott et al. (2016)

#### Gravitational waves detected!



#### GWI50914 was "super-luminous"

- $3 M_{\odot} \sim 5 \times 10^{54} \text{ erg}$  converted to the GW energy
- this was emitted within ~0.1 sec
- thus the peak luminosity was ~10<sup>56</sup> erg/s, which was much more luminous than SNe/GRBs

#### Gravitational wave standard sirens

- we can infer masses of inspiraling compact binaries from the waveform
- observed strain amplitude is inversely proportional to the luminosity distance to the source
- we can measure the luminosity distance directly, incld. absolute distance scale H<sub>0</sub> (Schutz 1986)



# $h \propto \frac{M_z^{5/3}}{D_L(z)} f^{2/3}$ $\dot{f} \propto M_z^{5/3} f^{11/3}$ $\rightarrow \text{chirp mass } M_z$

and distance D<sub>L</sub>

#### Merger/Ringdown

→ final BH mass, spin, and distance DL

Abbott et al. (2016)

#### Standard siren at work



#### <u>GWI509I4</u>

observed waveform fitted to GR predicted waveforms

- → luminosity distance  $D_L = 410^{+160} - 180$  Mpc
- → inferred redshift assuming standard cosmological model  $z = 0.09^{+0.03}_{-0.04}$

## Cosmology with gravitational waves

- inspiraling compact binaries (BH-BH, NS-NS, BH-NS) are excellent standard sirens that allow us to measure absolute distances to the sources with gravitational waves
- *if* we get redshifts to the sources from other observations (electromagnetic counterparts) we can directly constrain the distance-redshift relation at cosmological distances
  - $\rightarrow$  useful constraints on H<sub>0</sub>,  $\Omega_m$ , w, ...

(Holz & Hughes 2005; Dalal et al. 2006; Cutler & Holz 2009; Nissanke et al. 2010; ...)

## Precision cosmology with GWs

even a small number of well-measured GWs with EM counterparts for z can constrain cosmology

information on the  $b^{3}$  absolute distance scale  $H_0$  is very precious





 ● deflection of light ray due to gravitational lensing changes apparent brightness of observed images
 → effectively changes the luminosity distance

$$D_{\rm obs} = \bar{D}\mu^{-1/2} \approx \bar{D}\left[1 - \kappa(\vec{\theta}, z)\right]$$

#### Gravitational lensing as noise

- lensing is the most important source of errors in cosmology with GW standard sirens (also for high-z SNela, time delay cosmography, ...)
- effect is larger at higher-z
- can be averaged out, but beware that lensing effect is quite non-Gaussian



#### Gravitational wave detectors

- second generation (~2018) [~10<sup>2</sup>-10<sup>3</sup> BH-BHs]
  Advanced LIGO, VIRGO, KAGRA, ...
- third generation (~2025?) [~10<sup>5</sup>-10<sup>6</sup> BH-BHs] Einstein Telescope, LIGO Cosmic Explorer, ... (~10km underground)
- space (~2035?)
  LISA, DECIGO, ...

#### Pros and cons

#### Pros

- clean physics, can easily/robustly predict signals from the first principle (assuming GR)
- can reach high-z relatively easily (h  $\propto D_{L}^{-1}$ )

#### Cons

- GWs are hard to detect!
- need to identify electromagnetic counterparts for redshifts – how easy/secure??

## Localizing GWs

- it is essential to identify electromagnetic (EM) counterparts for measuring redshifts (necessary for cosmology)
- several challenges
  - angular resolution of GW observations is not great
  - not clear how bright EM counterparts are
  - for BH-BH mergers we usually don't expect EM counterparts

Abbott et al. (2016)

#### Location of GWI50914 on the sky



- expected direction of GWI509I4 is not well-constrained, with area ~600 deg<sup>2</sup>
- more GW detectors will improve the accuracy

Abbott et al. (2016)

#### Expected localization accuracy



## $\rightarrow \sim 100 \, deg^2$



#### 4-5 detectors → ~10 deg<sup>2</sup>

Do we really need EM counterparts for cosmology with GW standard sirens?

#### Oguri Phys. Rev. D93(2016)083511 Cross-correlation approach

- in the future we will have a bunch of burst GW events, possibly without EM counterparts
- idea: constrain distance-redshift relation with cross-correlation of GW sources (known D<sub>L</sub>) and galaxies (known z)
- no need of follow-up observations for individual GW events!

## Cross-correlation approach



- cross-correlation of spatial distributions  $w(\theta) = \langle \delta_{GW}(\vec{\theta'}) \delta_{gal}(\vec{\theta'} + \vec{\theta}) \rangle$
- when D<sub>obs</sub>>D(z<sub>gal</sub>) cross-correlation is small



## Cross-correlation approach



- cross-correlation of spatial distributions  $w(\theta) = \langle \delta_{GW}(\vec{\theta'}) \delta_{gal}(\vec{\theta'} + \vec{\theta}) \rangle$
- when D<sub>obs</sub>≈D(z<sub>gal</sub>) cross-correlation is large



#### Cross-correlation approach



• cross-correlation of spatial distributions  $w(\theta) = \langle \delta_{\rm GW}(\vec{\theta'}) \delta_{\rm gal}(\vec{\theta'} + \vec{\theta}) \rangle$ 

 when D<sub>obs</sub><D(z<sub>gal</sub>) cross-correlation is small



## Apparent clustering due to lensing



 weak lensing changes observed distance

t  $D_{\rm obs} = \bar{D}\mu^{-1/2} \approx \bar{D}\left[1 - \kappa(\vec{\theta}, z)\right]$ 

 since lensing effect is position-dependent it induces additional clustering pattern on the sky

#### Oguri Phys. Rev. D93(2016)083511 Cross-correlation signals



#### Oguri Phys. Rev. D93(2016)083511

#### Forecast

- GWs from third-generation exp. + galaxies from Euclid (0.3<z<1.5)</li>
- I<sub>max</sub> comes from accuracy of GW localizations fiducial: I<sub>max</sub> = 100 (→ ~1deg) optimistic: I<sub>max</sub> = 300
- tight constraints on H<sub>0</sub> and w possible with the crosscorrelation approach (without any follow-up!)



## Summary

- gravitational waves from mergers of compact binaries are a promising, totally new absolute distance indicator at cosmological scale
- recent observation of GWI50914 suggested its enormous potential
- usually identifications of EM counterparts are need to get redshifts and constrain distanceredshift relation
- a cross-correlation approach is proposed which enables GW cosmology without follow-up